Previous |  Up |  Next

Article

Title: The projective properties of the extreme path derivatives (English)
Author: Matejdes, Milan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 4
Year: 1992
Pages: 451-464
.
Category: math
.
MSC: 26A21
MSC: 26A24
idZBL: Zbl 0761.26005
idMR: MR1195039
.
Date available: 2009-09-25T10:42:11Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133060
.
Reference: [1] ALIKHANI-KOOPAEI A.: Borel measurability of extreme path derivatives.Real Anal. Exchange 12 (1986-87), 216-246. Zbl 0631.26002, MR 0873894
Reference: [2] BRUCKNER A., O'MALLEY R., THOMSON B. S.: Path derivatives: A unified view of certain generalized derivatives.Trans. Amer. Math. Soc. 283 (1984), 97-125. Zbl 0541.26003, MR 0735410
Reference: [3] HIMMELBERG J.: Measurable relations.Fund. Math. 87 (1975), 53-72. Zbl 0296.28003, MR 0367142
Reference: [4] JARNÍK V.: Über die Differenzierbarkeit stetizer Funktionen.Fund. Math. 21 (1933), 48-58.
Reference: [5] KURATOWSKI C.: Topologie I..PWN, Warszawa, 1952.
Reference: [6] KURATOWSKI K.: The σ-algebra generated by Souslin sets and its applications to set-valued mappings and to selector problems.Boll. Un. Mat. Ital. (Suppl. dedicato a Giovanni Sansone) 11 (1975), 285-298. MR 0415566
Reference: [7] KURATOWSKI K., MOSTOWSKI A.: Set Theory with an Introduction to Descriptive Set Theory.(Polish), PWN, Warszawa, 1978. MR 0514701
Reference: [8] MATEJDES M.: The semi Borel classification of the extreme path derivatives.Real Anal. Exchange 15 (1989-90), 216-238. MR 1042538
Reference: [9] MATEJDES M.: Path differentiation in the Borel setting.Real Anal. Exchange 16 (1990-91), 311-318. MR 1087496
.

Files

Files Size Format View
MathSlov_42-1992-4_8.pdf 1.185Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo