Previous |  Up |  Next

Article

Title: Covering densities (English)
Author: Paštéka, Milan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 5
Year: 1992
Pages: 593-614
.
Category: math
.
MSC: 11B05
MSC: 11B25
MSC: 11B50
idZBL: Zbl 0770.11009
idMR: MR1202176
.
Date available: 2009-09-25T10:43:59Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133254
.
Reference: [1] BHASKARA RAO K. P. S., BHASKARA RAO M.: Theory of Charges. A Study of Finitely Additive Measures.Academic Press, London, 1983. Zbl 0516.28001, MR 0751777
Reference: [2] BOREL E.: Sur les probabilités dénombrables et leur applications aritmétiques., Rend. Circ. Mat. Palermo 26 (1909), 247-271.
Reference: [3] BUCK R. C.: The measure theoretic approach to density.Amer. J. Math. 68 (1946), 560-580. Zbl 0061.07503, MR 0018196
Reference: [4] CANTELLI F. P.: La tendenza ad un limite nel senzo del calcolo della probability.Rend. Circ. Mat. Palermo 16 (1916), 191-201.
Reference: [5] ČECH E.: Point Sets.Academia, Praha, 1969. MR 0256344
Reference: [6] DIJKSMA A., MEIJER H. G.: Note on uniformly distributed sequences of integers.Nieuw Arch. Wisk. 17 (1969), 210-213. Zbl 0186.08701, MR 0257021
Reference: [7] ERDÖS P., RÉNYI A.: On Cantor's series with convergent $\sum\frac1{q_n}$., Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2 (1959), 93-109. MR 0126414
Reference: [8] ERDÖS P., RÉNYI A.: Some further statistical properties of the digits in Cantor's series.Acta Math. Hungar. 10 (1959), 21-29. Zbl 0088.25804, MR 0107631
Reference: [9] ESTRADA T., CANVALL R.: Series that converge on sets of null density.Proc. Amer. Math. Soc. 97 (1986), 682-686. MR 0845987
Reference: [10] HARDY G. H., WRIGHT E. M.: An Introduction to Theory of Numbers.Fourth edition, Clarendon Press, Oxford, 1960.
Reference: [11] HINTZMANN W.: Measure and density of sequences.Amer. Math. Monthly 73 (1966), 133-135. MR 0199170
Reference: [12] KINGMAN J. F. C., TAYLOR S. J.: Introduction to Measure & Probability.Cambridge University Press, Cambridge, 1977. MR 0218515
Reference: [13] KUIPERS L., NIEDEREITER H.: Uniform Distribution of Sequences.J. Wiley, New York, 1974. MR 0419394
Reference: [14] MAHARAM D.: Finitely additive measures on the integers.Sankhya 38 (1976), 44-59. Zbl 0383.60008, MR 0473132
Reference: [15] MEIJER H. G.: On uniform distribution of integers and uniform distribution.mod 1, Niew Arch. Wisk. 18 (1970), 271-278. Zbl 0207.36101, MR 0285494
Reference: [16] NAGOTA J.-L.: Modern General Topology.North-Holland Publ., Amsterdam- London, 1974.
Reference: [17] NEUBRUNN T., RIEČAN B.: Measure and Integral.(Slovak), Veda, Bratislava, 1981. Zbl 0485.28001, MR 0657765
Reference: [18] NIVEN I.: Uniform distribution of sequences of integers.Trans. Amer. Math. Soc. 98 (1961), 52-61. Zbl 0096.03102, MR 0120214
Reference: [19] NOVOSELOV E. V.: Topologičeskaja teorija delimosti celych čisel.Uchen. Zap. Elabuž. Ped. Inst. 8 (1960), 3-23.
Reference: [20] NOVOSELOV E. V.: Ob integrirovanii na odnom bikompaktnom koľce i ego priloženiach k teorii čisel.Izv. Vyssh. Uchebn. Zaved. Mat. 22 (1961), 66-79.
Reference: [21] OLEJČEK V.: Darboux property of finitely additive measure on σ-ring.Math. Slovaca 27 (1977), 195-201. MR 0476975
Reference: [22] PAŠTÉKA M.: Convergence of series and submeasures of the set of positive integers.Math. Slovaca 40 (1990), 273-278. Zbl 0755.40003, MR 1094780
Reference: [23] PAŠTÉKA M.: Some properties of Buck's measure density.Math. Slovaca 42 (1992), 15-32. Zbl 0761.11003, MR 1159488
Reference: [24] RENYI A.: Wahrschemlichkeitrechnung.VEB Deutscher Verlag der Wissenschaften, Berlin, 1962. MR 0148088
Reference: [25] UCHIYAMA S.: On the uniform distribution of sequences of integers.Proc. Jap. Acad. Ser. A Math. Sci. 32 (1961), 605-609. Zbl 0131.29203, MR 0137695
.

Files

Files Size Format View
MathSlov_42-1992-5_6.pdf 1.542Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo