Previous |  Up |  Next

Article

Title: Some Diophantine approximation results concerning linear recurrences (English)
Author: Jones, James P.
Author: Kiss, Péter
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 5
Year: 1992
Pages: 583-591
.
Category: math
.
MSC: 11B39
MSC: 11J68
idZBL: Zbl 0770.11035
idMR: MR1202175
.
Date available: 2009-09-25T10:43:49Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136567
.
Reference: [1] JARDEN D.: Recurring sequences.Riveon Lematematika, Jerusalem (Israel) (1973).
Reference: [2] KISS P.: A Diophantine approximative property of the second order linear recurrences.Period. Math. Hungar. 11 (1980), 281-287. Zbl 0458.10011, MR 0603396
Reference: [3] KISS P.: On second order recurrences and continued fractions.Bull. Malaysian Math. Soc. (2) 5 (1982), 33-41. MR 0683809
Reference: [4] KISS P., SINKA Z.: On the ratios of the terms of sccond order linear recurrences.Period. Math. Hungar. 23 (1991), 139-143. MR 1142515
Reference: [5] KISS P., TICHY R. F.: A discrepancy problem with applications to linear recurrences I, II.Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 135-138, 191-194. Zbl 0692.10041, MR 1011853
Reference: [6] LEHMER D. H.: An extended theory of Lucas' functions.Aпn. of Math. 31 (1930), 419-448. MR 1502953
Reference: [7] LUCAS E.: Thorie des fonctions numériques simplement périodiques.Amer. J. Math. 1 (1878), 184-240, 289-321. English translation: The Fibonacci Association, Santa Claгa University, CA. 95053, (1969). MR 1505176
Reference: [8] MÁTYÁS F.: On the ratios of the terms of second order linear recurrences.(Hungarian). Mat. Lapok 27 (1976-1979), 379-389. MR 0553555
Reference: [9] NIVEN I., ZUCKERMAN H. S., MONTGOMERY H. L.: An introduction to the Theory of Numbers.5th edition. J. Wiley & Sons Inc., New York, 1991. Zbl 0742.11001, MR 1083765
.

Files

Files Size Format View
MathSlov_42-1992-5_5.pdf 1.130Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo