Previous |  Up |  Next

Article

Title: On isometries in partially ordered groups (English)
Author: Jasem, Milan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 1
Year: 1993
Pages: 21-29
.
Category: math
.
MSC: 06F15
MSC: 06F20
idZBL: Zbl 0776.06015
idMR: MR1216265
.
Date available: 2009-09-25T10:45:12Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133263
.
Reference: [1] BENADO M.: Sur la théorie de la divisibilité.Acad. R. P. Romine. Bul. Sti. Sect. Mat. Fyz. 6 (1954), 263-270. Zbl 0057.25301, MR 0067089
Reference: [2] FUCHS L.: Riesz groups.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1965), 1-34. Zbl 0125.28703, MR 0180609
Reference: [3] FUCHS L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [4] GLASS A. M. W.: Polars and their applications in directed interpolation groups.Trans. Amer. Math. Soc. 166 (1972), 1-25. Zbl 0235.06004, MR 0295991
Reference: [5] GOODEARL K. R.: Partially Ordered Abelian Groups with Interpolation.Amer. Math. Soc., Providence, 1986. Zbl 0589.06008, MR 0845783
Reference: [6] HOLLAND, CH.: Intrinsic metrics for lattice ordered groups.Algebra Universalis 19 (1984), 142-150. Zbl 0557.06011, MR 0758313
Reference: [7] JAKUBÍK J.: Isometries of lattice ordered groups.Czechoslovak Math. J. 30 (1980), 142-152. Zbl 0436.06013, MR 0565917
Reference: [8] JAKUBÍK J.: On isometries of non-abelian lattice ordered groups.Math. Slovaca 31 (1981), 171-175. Zbl 0457.06014, MR 0611629
Reference: [9] JAKUBÍK J.: Weak isometries of lattice ordered groups.Math. Slovaca 38 (1988), 133-138. Zbl 0642.06009, MR 0945366
Reference: [10] JAKUBÍK J., KOLIBIAR M.: Isometries of multilattice groups.Czechoslovak Math. J. 33 (1983), 602-612. Zbl 0538.06018, MR 0721089
Reference: [11] JASEM M.: Isometries in Riesz groups.Czechoslovak Math. J. 36 (1986), 35-43. Zbl 0603.06007, MR 0822864
Reference: [12] JASEM M.: Isometries in non-abelian multilattice groups.Czechoslovak Math. J., (Submitted). Zbl 0890.06012
Reference: [13] JASEM M.: Weak isometries and isometries in partially ordered groups.Algebra Universalis, (Submitted).
Reference: [14] JASEM M.: On weak isometries in multilattice groups.Math. Slovaca 40 (1990), 337-340. Zbl 0753.06015, MR 1120964
Reference: [15] McALISTER D. B.: On multilattice groups.Proc. Cambridge Philos. Soc. 61 (1965), 621-638. Zbl 0135.06203, MR 0175819
Reference: [16] POWELL W. B.: On isometries in abelian lattice ordered groups.J. Indian Math. Soc. (N.S.) 46 (1982), 189-194. MR 0878072
Reference: [17] RACHŮNEK J.: Isometries in ordered groups.Czechoslovak Math. J. 34 (1984), 334-341. Zbl 0558.06020, MR 0743498
Reference: [18] SWAMY K. L. N.: Isometries in autometrized lattice ordered groups.Algebra Universalis 8 (1978), 59-64. Zbl 0409.06007, MR 0463074
Reference: [19] SWAMY K. L. N.: Isometries in autometrized lattice ordered groups II.Seminar Notes Kobe Univ. 5 (1977), 211-214. Zbl 0457.06015, MR 0463075
.

Files

Files Size Format View
MathSlov_43-1993-1_3.pdf 519.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo