Previous |  Up |  Next

Article

Title: Periodic BVP with $\phi$-Laplacian and impulses (English)
Author: Polášek, Vladimír
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 44
Issue: 1
Year: 2005
Pages: 131-150
Summary lang: English
.
Category: math
.
Summary: The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \] The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions. (English)
Keyword: $\phi $-Laplacian
Keyword: impulses
Keyword: lower and upper functions
Keyword: periodic boundary value problem
MSC: 34B37
MSC: 34C25
idZBL: Zbl 1097.34021
idMR: MR2218573
.
Date available: 2009-08-21T06:50:08Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133377
.
Reference: [1] Cabada A., Pouso L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with nonlinear boundary conditions.Nonlinear Analysis 35 (1999), 221–231. MR 1643240
Reference: [2] Cabada A., Pouso L. R.: Existence result for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with periodic and Neumann boundary conditions.Nonlinear Anal. T.M.A 30 (1997), 1733–1742. MR 1490088
Reference: [3] O’Regan D.: Some general principles and results for $(\phi (u^{\prime }))^{\prime } = qf(t, u, u^{\prime })$, $0 < t < 1$.SIAM J. Math. Anal. 24 (1993), 648–668. MR 1215430
Reference: [4] Manásevich R., Mawhin J.: Periodic solutions for nonlinear systems with p-Laplacian like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038
Reference: [5] Bainov D., Simeonov P.: Impulsive differential equations: periodic solutions, applications. : Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England., 1993. MR 1266625
Reference: [6] Cabada A., Nieto J. J., Franco D., Trofimchuk S. I.: A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points.Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 145–158. Zbl 0953.34020, MR 1744974
Reference: [7] Yujun Dong: Periodic solutions for second order impulsive differential systems.Nonlinear Anal. T.M.A 27 (1996), 811–820. MR 1402168
Reference: [8] Erbe L. H., Xinzhi Liu: Existence results for boundary value problems of second order impulsive differential equations.J. Math. Anal. Appl. 149 (1990), 56–59. MR 1054793
Reference: [9] Shouchuan Hu, Laksmikantham V.: Periodic boundary value problems for second order impulsive differential equations.Nonlinear Anal. T.M.A 13 (1989), 75–85. MR 0973370
Reference: [10] Liz E., Nieto J. J.: Periodic solutions of discontinuous impulsive differential systems.J.  Math. Anal. Appl. 161 (1991), 388–394. Zbl 0753.34027, MR 1132115
Reference: [11] Liz E., Nieto J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations.Comment. Math. Univ. Carolinae 34 (1993), 405–411. Zbl 0780.34006, MR 1243071
Reference: [12] Rachůnková I., Tomeček J.: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions.J. Math. Anal. Appl. 292 (2004), 525–539. Zbl 1058.34031, MR 2047629
Reference: [13] Rachůnková I., Tvrdý M.: Impulsive Periodic Boudary Value Problem and Topological Degree.Funct. Differ. Equ. 9 (2002), 471–498. MR 1971622
Reference: [14] Zhitao Zhang: Existence of solutions for second order impulsive differential equations.Appl. Math., Ser. B (eng. Ed.) 12 (1997), 307–320. MR 1482919
.

Files

Files Size Format View
ActaOlom_44-2005-1_12.pdf 456.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo