Title:
|
Periodic BVP with $\phi$-Laplacian and impulses (English) |
Author:
|
Polášek, Vladimír |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
44 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
131-150 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \] The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions. (English) |
Keyword:
|
$\phi $-Laplacian |
Keyword:
|
impulses |
Keyword:
|
lower and upper functions |
Keyword:
|
periodic boundary value problem |
MSC:
|
34B37 |
MSC:
|
34C25 |
idZBL:
|
Zbl 1097.34021 |
idMR:
|
MR2218573 |
. |
Date available:
|
2009-08-21T06:50:08Z |
Last updated:
|
2012-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133377 |
. |
Reference:
|
[1] Cabada A., Pouso L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with nonlinear boundary conditions.Nonlinear Analysis 35 (1999), 221–231. MR 1643240 |
Reference:
|
[2] Cabada A., Pouso L. R.: Existence result for the problem $(\phi (u^{\prime }))^{\prime } = f(t, u, u^{\prime })$ with periodic and Neumann boundary conditions.Nonlinear Anal. T.M.A 30 (1997), 1733–1742. MR 1490088 |
Reference:
|
[3] O’Regan D.: Some general principles and results for $(\phi (u^{\prime }))^{\prime } = qf(t, u, u^{\prime })$, $0 < t < 1$.SIAM J. Math. Anal. 24 (1993), 648–668. MR 1215430 |
Reference:
|
[4] Manásevich R., Mawhin J.: Periodic solutions for nonlinear systems with p-Laplacian like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038 |
Reference:
|
[5] Bainov D., Simeonov P.: Impulsive differential equations: periodic solutions, applications. : Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England., 1993. MR 1266625 |
Reference:
|
[6] Cabada A., Nieto J. J., Franco D., Trofimchuk S. I.: A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points.Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 145–158. Zbl 0953.34020, MR 1744974 |
Reference:
|
[7] Yujun Dong: Periodic solutions for second order impulsive differential systems.Nonlinear Anal. T.M.A 27 (1996), 811–820. MR 1402168 |
Reference:
|
[8] Erbe L. H., Xinzhi Liu: Existence results for boundary value problems of second order impulsive differential equations.J. Math. Anal. Appl. 149 (1990), 56–59. MR 1054793 |
Reference:
|
[9] Shouchuan Hu, Laksmikantham V.: Periodic boundary value problems for second order impulsive differential equations.Nonlinear Anal. T.M.A 13 (1989), 75–85. MR 0973370 |
Reference:
|
[10] Liz E., Nieto J. J.: Periodic solutions of discontinuous impulsive differential systems.J. Math. Anal. Appl. 161 (1991), 388–394. Zbl 0753.34027, MR 1132115 |
Reference:
|
[11] Liz E., Nieto J. J.: The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations.Comment. Math. Univ. Carolinae 34 (1993), 405–411. Zbl 0780.34006, MR 1243071 |
Reference:
|
[12] Rachůnková I., Tomeček J.: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions.J. Math. Anal. Appl. 292 (2004), 525–539. Zbl 1058.34031, MR 2047629 |
Reference:
|
[13] Rachůnková I., Tvrdý M.: Impulsive Periodic Boudary Value Problem and Topological Degree.Funct. Differ. Equ. 9 (2002), 471–498. MR 1971622 |
Reference:
|
[14] Zhitao Zhang: Existence of solutions for second order impulsive differential equations.Appl. Math., Ser. B (eng. Ed.) 12 (1997), 307–320. MR 1482919 |
. |