Previous |  Up |  Next

Article

Title: Infinitesimal bending of a subspace of a space with non-symmetric basic tensor (English)
Author: Minčić, Svetislav M.
Author: Velimirović, Ljubica S.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 44
Issue: 1
Year: 2005
Pages: 115-130
Summary lang: English
.
Category: math
.
Summary: In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-sym\-metry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations). (English)
Keyword: generalized Riemannian space
Keyword: infinitesimal bending
Keyword: infinitesimal deformation
Keyword: subspace
MSC: 53A45
MSC: 53B05
MSC: 53B20
MSC: 53C25
idZBL: Zbl 1088.53007
idMR: MR2218572
.
Date available: 2009-08-21T06:49:51Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133373
.
Reference: [1] Efimov N. V.: Kachestvennye voprosy teorii deformacii poverhnostei.UMN 3.2 (1948), 47–158.
Reference: [2] Eisenhart L. P.: Generalized Riemann spaces.Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. MR 0043530
Reference: [3] Kon-Fossen S. E.: Nekotorye voprosy differ. geometrii v celom. : Fizmatgiz, Moskva., 1959.
Reference: [4] Hineva S. T.: On infinitesimal deformations of submanifolds of a Riemannian manifold.Differ. Geom., Banach center publications 12, PWN, Warshaw, 1984, 75–81. Zbl 0556.53035, MR 0961074
Reference: [5] Ivanova-Karatopraklieva I., Sabitov I. Kh.: Surface deformation.J. Math. Sci., New York, 70, 2 (1994), 1685–1716.
Reference: [6] Ivanova-Karatopraklieva I., Sabitov I. Kh.: Bending of surfaces II.J. Math. Sci., New York, 74, 3 (1995), 997–1043. Zbl 0861.53002, MR 1330961
Reference: [7] Lizunova L. Yu.: O beskonechno malyh izgibaniyah giperpoverhnostei v rimanovom prostranstve.Izvestiya VUZ, Matematika 94, 3 (1970), 36–42. MR 0276901
Reference: [8] Markov P. E.: Beskonechno malye izgibanya nekotoryh mnogomernyh poverhnostei.Matemat. zametki T. 27, 3 (1980), 469–479. MR 0570757
Reference: [9] Mikeš J.: Holomorphically projective mappings and their generalizations.J. Math. Sci., New York, 89, 3 (1998), 1334–1353. Zbl 0983.53013, MR 1619720
Reference: [10] Mikeš J., Laitochová J., Pokorná O.: On some relations between curvature and metric tensors in Riemannian spaces.Suppl. ai Rediconti del Circolo Mathematico di Palermo 2, 63 (2000), 173–176. Zbl 0978.53030
Reference: [11] Minčić S. M.: Ricci type identities in a subspace of a space of non-symmetric affine connexion.Publ. Inst. Math., NS, t.18(32) (1975), 137–148. MR 0383272
Reference: [12] Minčić S. M.: Novye tozhdestva tipa Ricci v podprostranstve prostranstva nesimmetrichnoi affinoi svyaznosty.Izvestiya VUZ, Matematika 203, 4 (1979), 17–27.
Reference: [13] Minčić S. M.: Derivational formulas of a subspace of a generalized Riemannian space.Publ. Inst. Math., NS, t.34(48) (1983), 125–135. MR 0770025
Reference: [14] Minčić S. M.: Integrability conditions of derivational formulas of a subspace of generalized Riemannian space.Publ. Inst. Math., NS, t.31(45) (1980), 141–157.
Reference: [15] Minčić S. M., Velimirović L. S.: O podprostranstvah obob. rimanova prostranstva.Siberian Mathematical Journal, Dep. v VINITI No.3472-V 98 (1998).
Reference: [16] Minčić S. M., Velimirović L. S.: Riemannian Subspaces of Generalized Riemannian Spaces.Universitatea Din Bacau Studii Si Cercetari Stiintifice, Seria: Matematica, 9 (1999), 111–128. Zbl 1056.53500, MR 1848987
Reference: [17] Minčić S. M., Velimirović L. S., Stanković M. S.: Infinitesimal Deformations of a Non-Symmetric Affine Connection Space.Filomat (2001), 175–182.
Reference: [18] Velimirović L. S., Minčić S. M., Stanković M. S.: Infinitesimal deformations and Lie Derivative of a Non-symmetric Affine Connection Space.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. Zbl 1061.53010, MR 2056026
Reference: [19] Mishra R. S.: Subspaces of generalized Riemannian space.Bull. Acad. Roy. Belgique, Cl. sci., (1954), 1058–1071. MR 0067551
Reference: [20] Prvanovich M.: Équations de Gauss d’un sous-espace plongé dans l’espace Riemannien généralisé.Bull. Acad. Roy. Belgique, Cl. sci., (1955), 615–621.
Reference: [21] Velimirović L. S., Minčić S. M.: On infinitesimal bendings of subspaces of generalized Riemannian spaces.Tensor (2004), 212–224.
Reference: [22] Yano K.: Sur la theorie des deformations infinitesimales.Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1–75. Zbl 0040.37803, MR 0035084
Reference: [23] Yano K.: Infinitesimal variations of submanifolds.Kodai Math. J., 1 (1978), 30–44. Zbl 0411.53037, MR 0487913
.

Files

Files Size Format View
ActaOlom_44-2005-1_11.pdf 357.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo