Previous |  Up |  Next

Article

Title: Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations (English)
Author: Malaguti, Luisa
Author: Taddei, Valentina
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 44
Issue: 1
Year: 2005
Pages: 97-113
Summary lang: English
.
Category: math
.
Summary: The paper deals with the quasi-linear ordinary differential equation $(r(t)\varphi (u^{\prime }))^{\prime }+g(t,u)=0$ with $t \in [0, \infty )$. We treat the case when $g$ is not necessarily monotone in its second argument and assume usual conditions on $r(t)$ and $\varphi (u)$. We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta Math. Hung. 1990]. In some special cases we are able to show the exact asymptotic growth of these solutions. We apply previous analysis for studying the non-oscillatory problem associated to the equation when $\varphi (u)=u$. Several examples are included. (English)
Keyword: quasi-linear second order equations
Keyword: unbounded
Keyword: oscillatory and non-oscillatory solutions
Keyword: fixed-point techniques
MSC: 34C10
MSC: 34C11
MSC: 47N20
idZBL: Zbl 1098.34025
idMR: MR2218571
.
Date available: 2009-08-21T06:48:50Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133386
.
Reference: [1] Cecchi M., Marini M., Villari G.: On some classes of continuable solutions of a nonlinear differential equation.J. Diff. Equat. 118 (1995), 403–419. Zbl 0827.34020
Reference: [2] Cecchi M., Marini M., Villari G.: Topological and variational approaches for nonlinear oscillation: an extension of a Bhatia result.Proc. First World Congress Nonlinear Analysts, Walter de Gruyter, Berlin, 1996, 1505–1514. Zbl 0846.34027
Reference: [3] Cecchi M., Marini M., Villari G.: Comparison results for oscillation of nonlinear differential equations.Nonlin. Diff. Equat. Appl. 6 (1999), 173–190. Zbl 0927.34023
Reference: [4] Coffman C. V., Wong J. S. W.: Oscillation and nonoscillation of solutions of generalized Emden–Fowler equations.Trans. Amer. Math. Soc. 167 (1972), 399–434. Zbl 0278.34026
Reference: [5] Došlá Z., Vrkoč I.: On an extension of the Fubini theorem and its applications in ODEs.Nonlinear Anal. 57 (2004), 531–548. Zbl 1053.34033
Reference: [6] Elbert A., Kusano T.: Oscillation and non-oscillation theorems for a class of second order quasilinear differential equations.Acta Math. Hung. 56 (1990), 325–336. MR 1111319
Reference: [7] Kiyomura J., Kusano T., Naito M.: Positive solutions of second order quasilinear ordinary differential equations with general nonlinearities.St. Sc. Math. Hung. 35 (1999), 39–51. MR 1690272
Reference: [8] Kusano T., Norio Y.: Nonoscillation theorems for a class of quasilinear differential equations of second order.J. Math. An. Appl. 189 (1995), 115–127. Zbl 0823.34039, MR 1312033
Reference: [9] Tanigawa T.: Existence and asymptotic behaviour of positive solutions of second order quasilinear differential equations.Adv. Math. Sc. Appl. 9, 2 (1999), 907–938. MR 1725693
Reference: [10] Wang J.: On second order quasilinear oscillations.Funk. Ekv. 41 (1998), 25–54. Zbl 1140.34356, MR 1627369
Reference: [11] Wong J. S. W.: On the generalized Emden–Fowler equation.SIAM Review 17 (1975), 339–360. Zbl 0295.34026, MR 0367368
Reference: [12] Wong J. S. W.: A nonoscillation theorem for Emden–Fowler equations.J. Math. Anal. Appl. 274 (2002), 746–754. Zbl 1036.34039, MR 1936728
.

Files

Files Size Format View
ActaOlom_44-2005-1_10.pdf 417.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo