Previous |  Up |  Next

Article

Title: Hausdorff and packing dimensions for ergodic invariant measures of two-dimensional Lorenz transformations (English)
Author: Hofbauer, Franz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 221-243
Summary lang: English
.
Category: math
.
Summary: We extend the notions of Hausdorff and packing dimension introducing weights in their definition. These dimensions are computed for ergodic invariant probability measures of two-dimensional Lorenz transformations, which are transformations of the type occuring as first return maps to a certain cross section for the Lorenz differential equation. We give a formula of the dimensions of such measures in terms of entropy and Lyapunov exponents. This is done for two choices of the weights using the recurrence time of a set and equilibrium states respectively. (English)
Keyword: Hausdorff dimension
Keyword: packing dimension
Keyword: Lorenz transformation
Keyword: ergodic measure
MSC: 28A78
MSC: 37A35
MSC: 37C45
MSC: 37D50
idZBL: Zbl 1212.37064
idMR: MR2537833
.
Date available: 2009-08-18T12:24:47Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133430
.
Reference: [1] Afraimovich V.: Pesins dimension for Poincaré recurrences.Chaos 7 (1997), 12--20. MR 1439803, 10.1063/1.166237
Reference: [2] Afraimovich V., Chazottes J.-R., Saussol B.: Pointwise dimension for Poincaré recurrences associated with maps and special flows.Discrete Contin. Dyn. Syst. A 9 (2003), 263--280. MR 1952373
Reference: [3] Billingsley P.: Ergodic Theory and Information.Krieger New York (1978). MR 0524567
Reference: [4] Bowen R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms.Lecture Notes in Mathematics, 470 Springer Berlin-Heidelberg-New York (1975). Zbl 0308.28010, MR 2423393
Reference: [5] Cutler C.: The Hausdorff dimension distribution of finite measures in Euclidian space.Canad. J. Math. 38 (1986), 1459--1484. MR 0873419, 10.4153/CJM-1986-071-9
Reference: [6] Hofbauer F.: On intrinsic ergodicity of piecewise monotone transformations with positive entropy.Israel J. Math. 34 (1979), 213--237. MR 0570882, 10.1007/BF02760884
Reference: [7] Hofbauer F.: On intrinsic ergodicity of piecewise monotone transformations with positive entropy II.Israel J. Math. 38 (1981), 107--115. MR 0599481, 10.1007/BF02761854
Reference: [8] Hofbauer F.: Piecewise invertible dynamical systems.Probab. Theory Relat. Fields 72 (1986), 359--386. Zbl 0578.60069, MR 0843500, 10.1007/BF00334191
Reference: [9] Hofbauer F.: An inequality for the Lyapunov exponent of an ergodic invariant measure for a piecewise monotonic map on the interval.Lyapunov Exponents (Oberwolfach, 1990), L. Arnold, H. Crauel, J.-P. Eckmann, Eds., Lecture Notes in Mathematics, 1486, Springer, Berlin, 1991, pp. 227--231. MR 1178961
Reference: [10] Hofbauer F.: Hausdorff dimension and pressure for piecewise monotonic maps of the interval.J. London Math. Soc. 47 (1993), 142--156. Zbl 0725.54031, MR 1200984, 10.1112/jlms/s2-47.1.142
Reference: [11] Hofbauer F.: The recurrence dimension for piecewise monotonic maps of the interval.Ann. Scuola Norm. Super. Pisa Cl. Sci. 4 (2005), 439--449. Zbl 1170.37316, MR 2185864
Reference: [12] Hofbauer F., Keller G.: Ergodic properties of invariant measures for piecewise monotonic transformations.Math. Z. 180 (1982), 119--140. Zbl 0485.28016, MR 0656227, 10.1007/BF01215004
Reference: [13] Hofbauer F., Keller G.: Equilibrium states for piecewise monotonic transformations.Ergodic Theory Dynam. Systems 2 (1982), 23--43. Zbl 0499.28012, MR 0684242
Reference: [14] Hofbauer F., Raith P.: The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval.Canad. Math. Bull. 35 (1992), 84--98. Zbl 0701.28005, MR 1157469, 10.4153/CMB-1992-013-x
Reference: [15] Hofbauer F., Raith P., Steinberger T.: Multifractal dimensions for invariant subsets of piecewise monotonic interval maps.Fund. Math. 176 (2003), 209--232. Zbl 1051.37011, MR 1992820, 10.4064/fm176-3-2
Reference: [16] Hofbauer F., Urbański M.: Fractal properties of invariant subsets for piecewise monotonic maps of the interval.Trans. Amer. Math. Soc. 343 (1994), 659--673. MR 1232188, 10.1090/S0002-9947-1994-1232188-9
Reference: [17] Keller G.: Extended bounded variation and application to piecewise monotonic transformations.Probab. Theory Relat. Fields 69 (1985), 461--478. MR 0787608
Reference: [18] Ledrappier F.: Principe variationnel et systemes dynamiques symboliques.Probab. Theory Relat. Fields 30 (1974), 185--202. Zbl 0276.93004, MR 0404584
Reference: [19] Mattila P.: Geometry of Sets and Measures in Euclidean space.Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. MR 1333890
Reference: [20] Olsen L.: A multifractal formalism.Adv. Math. 116 (1995), 82--196. Zbl 0841.28012, MR 1361481, 10.1006/aima.1995.1066
Reference: [21] Pesin Ya.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications.Chicago Lectures in Mathematics University of Chicago Press Chicago (1997). MR 1489237
Reference: [22] Rychlik M.: Bounded variation and invariant measures.Studia Math. 76 (1983), 69--80. Zbl 0575.28011, MR 0728198
Reference: [23] Saussol B., Troubetzkoy S., Vaienti S.: Recurrence, dimensions and Lyapunov exponents.J. Statist. Phys. 106 (2002), 623--634. Zbl 1138.37300, MR 1884547, 10.1023/A:1013710422755
Reference: [24] Saussol B., Troubetzkoy S., Vaienti S.: Recurrence and Lyapunov exponents.Moscow Math. J. 3 (2003), 189--203. Zbl 1083.37504, MR 1996808
Reference: [25] Steinberger T.: Local dimension of ergodic measures for two-dimensional Lorenz transformations.Ergodic Theory Dynam. Systems 20 (2000), 911--923. Zbl 0965.37011, MR 1764935
Reference: [26] Walters P.: Equilibrium states for $\beta$-transformations and related transformations.Math. Z. 159 (1978), 65--88. Zbl 0364.28016, MR 0466492, 10.1007/BF01174569
Reference: [27] Walters P.: An Introduction to Ergodic Theory.Graduate Texts in Mathematics, 79, Springer, New York, 1982. Zbl 0958.28011, MR 0648108, 10.1007/978-1-4612-5775-2
Reference: [28] Young L.-S.: Dimension, entropy and Lyapunov exponents.Ergodic Theory Dynam. Systems 2 (1982), 109--124. Zbl 0523.58024, MR 0684248
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_5.pdf 364.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo