Previous |  Up |  Next

Article

Title: On the sign of Colombeau functions and applications to conservation laws (English)
Author: Jelínek, Jiří
Author: Pražák, Dalibor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 245-264
Summary lang: English
.
Category: math
.
Summary: A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws. (English)
Keyword: Colombeau algebra
Keyword: generalized sign
Keyword: conservation law
Keyword: entropy condition
MSC: 35L67
MSC: 46F30
idZBL: Zbl 1212.46061
idMR: MR2537834
.
Date available: 2009-08-18T12:24:54Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133431
.
Reference: [1] Colombeau J.-F.: Multiplication of distributions.Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 251--268. Zbl 0819.46026, MR 1028141, 10.1090/S0273-0979-1990-15919-1
Reference: [2] Colombeau J.-F.: Elementary introduction to new generalized functions.North-Holland Mathematics Studies 113, Notes on Pure Mathematics 103, North-Holland Publishing Co., Amsterdam, 1985. Zbl 0584.46024, MR 0808961
Reference: [3] Dafermos C.M.: Hyperbolic conservation laws in continuum physics.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325, Springer, Berlin, 2000. Zbl 1078.35001, MR 1763936
Reference: [4] Danilov V.G., Omel'yanov G.A.: Calculation of the singularity dynamics for quadratic nonlinear hyperbolic equations. Example: the Hopf equation.Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, 63--74. Zbl 0932.35144, MR 1699862
Reference: [5] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), no. 3, 511--547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835
Reference: [6] Lions P.-L., Perthame B., Tadmor E.: A kinetic formulation of multidimensional scalar conservation laws and related equations.J. Amer. Math. Soc. 7 (1994), no. 1, 169--191. Zbl 0820.35094, MR 1201239, 10.1090/S0894-0347-1994-1201239-3
Reference: [7] Lojasiewicz S.: Sur la valeur et la limite d'une distribution en un point.Studia Math. 16 (1957), 1--36. Zbl 0086.09405, MR 0087905
Reference: [8] Nozari K., Afrouzi G.A.: Travelling wave solutions to some PDEs of mathematical physics.Int. J. Math. Math. Sci. (2004), no. 21--24, 1105--1120. Zbl 1069.35057, MR 2085053
Reference: [9] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations.Pitman Research Notes in Mathematics Series 259, Longman Scientific & Technical, Harlow, 1992. Zbl 0818.46036, MR 1187755
Reference: [10] Perthame B.: Kinetic formulation of conservation laws.Oxford Lecture Series in Mathematics and its Applications 21, Oxford University Press, Oxford, 2002. Zbl 1030.35002, MR 2064166
Reference: [11] Rubio J.E.: The global control of shock waves.Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 355--367. Zbl 0933.35135, MR 1699875
Reference: [12] Rudin W.: Functional analysis.McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl 0867.46001, MR 0365062
Reference: [13] Schwartz L.: Théorie des distributions.Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX--X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. Zbl 0962.46025, MR 0209834
Reference: [14] Shelkovich V.M.: New versions of the Colombeau algebras.Math. Nachr. 278 (2005), no. 11, 1318--1340. Zbl 1115.46035, MR 2163299, 10.1002/mana.200310309
Reference: [15] Villarreal F.: Colombeau's theory and shock wave solutions for systems of PDEs.Electron. J. Differential Equations 2000, no. 21, 17 pp. Zbl 0966.46022, MR 1744084
Reference: [16] Ziemer W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation.Graduate Texts in Mathematics 120, Springer, New York, 1989. Zbl 0692.46022, MR 1014685, 10.1007/978-1-4612-1015-3_5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_6.pdf 305.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo