Previous |  Up |  Next

Article

Title: Normal bivariate Birkhoff interpolation schemes and Pell equation (English)
Author: Crainic, Marius
Author: Crainic, Nicolae
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 265-272
Summary lang: English
.
Category: math
.
Summary: Finding the normal Birkhoff interpolation schemes where the interpolation space and the set of derivatives both have a given regular ``shape'' often amounts to number-theoretic equations. In this paper we discuss the relevance of the Pell equation to the normality of bivariate schemes for different types of ``shapes''. In particular, when looking at triangular shapes, we will see that the conjecture in Lorentz R.A., {\it Multivariate Birkhoff Interpolation\/}, Lecture Notes in Mathematics, 1516, Springer, Berlin-Heidelberg, 1992, is not satisfied, and, at the same time, we will describe the complete solution. (English)
Keyword: Birkhoff interpolation
Keyword: Pell equation
MSC: 11D09
MSC: 65D05
idZBL: Zbl 1212.65040
idMR: MR2537835
.
Date available: 2009-08-18T12:25:01Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133432
.
Reference: [1] Barbeau E.J.: Pell's Equation.Springer, New York, 2003. Zbl 1030.11008, MR 1949691
Reference: [2] Lorentz R.A.: Multivariate Birkhoff Interpolation.Lecture Notes in Mathematics, 1516, Springer, Berlin-Heidelberg, 1992. Zbl 0760.41002, MR 1222648
Reference: [3] Gasca M., Maeztu J.I.: On Lagrange and Hermite interpolation in $\mathbb R^n$.Numer. Math. 39 (1982), 1--14. MR 0664533, 10.1007/BF01399308
Reference: [4] Stillwell J.: Elements of number theory.Undergraduate Texts in Mathematics, Springer, New York, 2003. Zbl 1112.11002, MR 1944957
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_7.pdf 210.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo