Previous |  Up |  Next

Article

Title: Interpolation of $\kappa$-compactness and PCF (English)
Author: Juhász, István
Author: Szentmiklóssy, Zoltán
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 315-320
Summary lang: English
.
Category: math
.
Summary: We call a topological space $\kappa$-compact if every subset of size $\kappa$ has a complete accumulation point in it. Let $\Phi(\mu,\kappa,\lambda)$ denote the following statement: $\mu < \kappa < \lambda = \operatorname{cf} (\lambda)$ and there is $\{ S_\xi : \xi < \lambda \} \subset [\kappa]^\mu$ such that $|\{ \xi : |S_\xi \cap A| = \mu \}| < \lambda$ whenever $A \in [\kappa]^{<\kappa}$. We show that if $\Phi(\mu,\kappa,\lambda)$ holds and the space $X$ is both $\mu$-compact and $\lambda$-compact then $X$ is $\kappa$-compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf} (\kappa), \kappa, \kappa^+)$ for every singular cardinal $\kappa$. As a corollary we get that a linearly Lindelöf and $\aleph_\omega$-compact space is uncountably compact, that is $\kappa$-compact for all uncountable cardinals $\kappa$. (English)
Keyword: complete accumulation point
Keyword: $\kappa$-compact space
Keyword: linearly Lindelöf space
Keyword: PCF theory
MSC: 03E04
MSC: 54A25
MSC: 54D30
idZBL: Zbl 1212.03029
idMR: MR2537839
.
Date available: 2009-08-18T12:25:32Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133436
.
Reference: [1] Arhangel'skii A.V.: Homogeneity and complete accumulation points.Topology Proc. 32 (2008), 239--243. Zbl 1170.54009, MR 1500085
Reference: [2] Shelah S.: Cardinal Arithmetic.Oxford Logic Guides, vol. 29, Oxford University Press, Oxford, 1994. Zbl 0864.03032, MR 1318912
Reference: [3] van Douwen E.: The Integers and Topology.in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp. 111--167. Zbl 0561.54004, MR 0776619
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_11.pdf 207.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo