Previous |  Up |  Next

Article

Title: What’s the price of a nonmeasurable set? (English)
Author: Sardella, Mirko
Author: Ziliotti, Guido
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 1
Year: 2002
Pages: 41-48
Summary lang: English
.
Category: math
.
Summary: In this note, we prove that the countable compactness of $\lbrace 0,1\rbrace ^{{\mathbb{R}}}$ together with the Countable Axiom of Choice yields the existence of a nonmeasurable subset of ${\mathbb{R}}$. This is done by providing a family of nonmeasurable subsets of ${\mathbb{R}}$ whose intersection with every non-negligible Lebesgue measurable set is still not Lebesgue measurable. We develop this note in three sections: the first presents the main result, the second recalls known results concerning non-Lebesgue measurability and its relations with the Axiom of Choice, the third is devoted to the proofs. (English)
Keyword: Lebesgue measure
Keyword: nonmeasurable set
Keyword: axiom of choice
MSC: 28A05
MSC: 28A20
MSC: 28E15
idZBL: Zbl 1006.28003
idMR: MR1895245
DOI: 10.21136/MB.2002.133985
.
Date available: 2009-09-24T21:57:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133985
.
Reference: [1] S. Banach, A. Tarski: Sur la dΘcomposition des ensembles de points en parties respectivement congruentes.Fund. Math. 6 (1924), 244–277. 10.4064/fm-6-1-244-277
Reference: [2] K. Ciesielski: How good is Lebesgue measure? Math.Intell. 11 (1984), 54–58. MR 0994965
Reference: [3] P. Erdös: On some properties of Hamel bases.Coll. Math. 10 (1963), 267–269. MR 0160858, 10.4064/cm-10-2-267-269
Reference: [4] M. Foreman, F. Wehrung: The Hahn-Banach Theorem implies the existence of a non-Lebesgue measurable set.Fund. Math. 138 (1991), 13–19. MR 1122273, 10.4064/fm-138-1-13-19
Reference: [5] B. R. Gelbaum, J. M. H. Olmstead: Counterexamples in analysis.Holden-Day, San Francisco, 1964. MR 0169961
Reference: [6] P. H. Halmos: Measure theory.Second edition, Van Nostrand, Princeton, 1950. Zbl 0040.16802, MR 0033869
Reference: [7] I. Halperin: Non-measurable sets and the equation $f(x+y) = f(x)+f(y)$.Proc. Amer. Math. Soc. 2 (1951), 221–224. Zbl 0043.11002, MR 0040387
Reference: [8] T. Jech: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [9] J. L. Kelley: General topology.Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144
Reference: [10] M. Kuczma, J. Smítal: On measures connected with the Cauchy equation.Aequationes Math. 14 (1976), 421–428. MR 0409750, 10.1007/BF01835991
Reference: [11] M. Kuczma: On some properties of Erdös sets.Coll. Math. 48 (1984), 127–134. Zbl 0546.39001, MR 0750764, 10.4064/cm-48-1-127-134
Reference: [12] G. Moore: Zermelo’s Axiom of Choice.Springer-Verlag, New York, 1982. Zbl 0497.01005, MR 0679315
Reference: [13] J. Mycielski, S. Swierczkowski: On the Lebesgue measurability and the axiom of determinateness.Fund. Math. 54 (1964), 67–71. MR 0161788, 10.4064/fm-54-1-67-71
Reference: [14] J. Pawlikowski: The Hahn-Banach Theorem implies the Banach-Tarski paradox.Fund. Math. 138 (1991), 21–22. Zbl 0792.28006, MR 1122274, 10.4064/fm-138-1-21-22
Reference: [15] D. Pincus: The strength of Hahn-Banach’s Theorem.Victoria Symposium on Non-Standard Analysis vol. 369, Lecture Notes in Math. Springer, 1974, pp. 203–248. MR 0476512
Reference: [16] D. Pincus, R. Solovay: Definability of measures and ultrafilters.J. Symbolic Logic 42 (1977), 179–190. MR 0480028, 10.2307/2272118
Reference: [17] J. Raissonier: A mathematical proof of S. Shelah’s theorem on the measure problem and related results.Israel J. Math. 48 (1984), 48–56. MR 0768265, 10.1007/BF02760523
Reference: [18] W. Sierpiński: Sur la question de la mesurabilité de la base de M. Hamel.Fund. Math. 1 (1920), 105–111. 10.4064/fm-1-1-105-111
Reference: [19] W. Sierpiński: Sur un problème concernant les ensembles mesurables superficiellement.Fund. Math. 1 (1920), 112–115. 10.4064/fm-1-1-112-115
Reference: [20] W. Sierpiński: Fonctions additives non complétement additives et fonctions mesurables.Fund. Math. 30 (1938), 96–99. 10.4064/fm-30-1-96-99
Reference: [21] A. Simonson: On two halves being two wholes.Math. Montly 91 (1984), 190–193. MR 0734931, 10.1080/00029890.1984.11971372
Reference: [22] S. Shelah: Can you take Solovay’s inaccessible away? Israel J.Math. 48 (1984), 1–47. MR 0768264, 10.1007/BF02760522
Reference: [23] R. Solovay: A model of set theory in which every set of reals is Lebesgue-measurable.Ann. of Math. 92 (1970), 1–56. Zbl 0207.00905, MR 0265151, 10.2307/1970696
Reference: [24] S. Ulam: Concerning functions of sets.Fund. Math. 14 (1929), 231–233. 10.4064/fm-14-1-231-233
Reference: [25] G. Vitali: Sul problema della misura dei gruppi di punti di una retta.Bologna, 1905.
Reference: [26] S. Wagon: The Banach-Tarski paradox.Cambridge University Press, Cambridge, 1986. MR 0803509
Reference: [27] W. Wilkosz: Sugli insiemi non-misurabili (L).Fund. Math. 1 (1920), 82–92. 10.4064/fm-1-1-82-92
.

Files

Files Size Format View
MathBohem_127-2002-1_5.pdf 322.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo