Previous |  Up |  Next

Article

Title: Precobalanced and cobalanced sequences of modules over domains (English)
Author: Giovannitti, A.
Author: Goeters, H. P.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 1
Year: 2007
Pages: 35-42
Summary lang: English
.
Category: math
.
Summary: The class of pure submodules ($\mathcal P$) and torsion-free images ($\mathcal R$) of finite direct sums of submodules of the quotient field of an integral domain were first investigated by M. C. R. Butler for the ring of integers (1965). In this case ${\mathcal P} = {\mathcal R}$ and short exact sequences of such modules are both prebalanced and precobalanced. This does not hold for integral domains in general. In this paper the notion of precobalanced sequences of modules is further investigated. It is shown that as in the case for abelian groups the exact sequence $ 0 \rightarrow M \rightarrow L \rightarrow T \rightarrow 0 $ with torsion $T$ is precobalanced precisely when it is cobalanced and in this case will split if $M$ is torsion-free of rank $1$. It is demonstrated that containment relationships between $\mathcal P$ and $\mathcal R$ for a domain $R$ are intimately related to the issue of when pure submodules of Butler modules are precobalanced. An analogous statement is made regarding the dual question of when torsion-free images of Butler modules are prebalanced. (English)
Keyword: precobalanced sequence
Keyword: cobalanced sequence
Keyword: torsion-free image
Keyword: pure submodule
MSC: 13C13
MSC: 13D99
MSC: 13G05
MSC: 18A20
idZBL: Zbl 1174.13016
idMR: MR2311751
DOI: 10.21136/MB.2007.133993
.
Date available: 2009-09-24T22:28:49Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133993
.
Reference: [1] M. C. R. Butler: A class of torsion-free abelian groups of finite rank.Proc. London Math. Soc. 15 (1965), 680–698. Zbl 0131.02501, MR 0218446
Reference: [2] M. C. R. Butler: Torsion-free modules and diagrams of vector spaces.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 635–652. Zbl 0179.32603, MR 0230767
Reference: [3] Laszlo Fuchs, Claudia Metelli: Countable Butler groups.Contemporary Mathematics 130 (1992), 133–143. MR 1176115, 10.1090/conm/130/1176115
Reference: [4] Laszlo Fuchs, Gert Viljoen: Note on extensions of Butler groups.Bull. Aust. Math. Soc. 41 (1990), 117–122. MR 1043972, 10.1017/S0004972700017901
Reference: [5] Anthony Giovannitti: A note on proper classes of exact sequences.Methods in Module Theory, Marcel Dekker, 1992, pp. 107–116. MR 1203802
Reference: [6] Anthony Giovannitti, Pat Goeters, Achim Kehrein: Prebalanced and balanced sequences of modules over domains.Commun. Algebra 31 (2003), 4817–4829. MR 1998030, 10.1081/AGB-120023134
Reference: [7] H. Pat Goeters: Butler modules over $1$-dimensional noetherian domains.Abelian Groups and Modules, Birkhäuser, Basel, 1999, pp. 149–165. MR 1735565
Reference: [8] H. Pat Goeters, Charles Vinsonhaler: Butler modules and Bext.Rings, Modules, Algebras, and Abelian Groups, Proceedings of the Algebra Conference—Venezia 2002, Marcel Dekker, New York, Lect. Notes Pure Appl. Math. 236 (2004), 307–319. MR 2050719
Reference: [9] Thomas W. Hungerford: Algebra.GTM 73, Springer, 1974. MR 0354211
Reference: [10] J. P. Jans: Rings and Homology.Holt, Rinehart and Winston, New York, 1964. Zbl 0141.02901, MR 0163944
Reference: [11] Saunders MacLane: Homology.Springer, Berlin, 1963. MR 0156879
Reference: [12] Eben Matlis: One Dimensional Cohen-Macaulay Rings.Lect. Notes Math., Springer, Berlin, 1973. MR 0357391
Reference: [13] Eben Matlis: Torsion Free Modules.University of Chicago Press, Chicago, 1972. MR 0344237
Reference: [14] H. Matsumura: Commutative Ring Theory.Cambridge University Press, 1980. MR 0879273
Reference: [15] Fred Richman, Elbert A. Walker: Ext in preabelian categories.Pac. J. Math. 71 (1977), 521–535. MR 0444742, 10.2140/pjm.1977.71.521
Reference: [16] Joeseph Rotman: An Introduction to Homological Algebra.Academic Press, New York, 1979. MR 0538169
.

Files

Files Size Format View
MathBohem_132-2007-1_4.pdf 307.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo