[1] P. Bonche, S. Koonin, J. W. Negele:
One-dimensional nuclear dynamics in the TDHF approximation. Phys. Rev. C 13 (1976), 1226–1258.
DOI 10.1103/PhysRevC.13.1226
[2] N. L. Balazs, B. Schürmann, K. Dietrich, L. P. Csernai:
Scaling properties in the hydrodynamical description of heavy-ion reactions. Nucl. Phys. A424 (1984), 605–626.
DOI 10.1016/0375-9474(84)90012-5
[3] J. Dechargé, D. Gogny:
Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 21 (1980), 1568–1593.
DOI 10.1103/PhysRevC.21.1568
[5] B. Ducomet, W. M. Zajaczkowski: On simplified models of nuclear fluids. In preparation.
[6] A. L. Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems. McGraw-Hill, 1971.
[7] K. Kuttler, D. Hicks:
Weak solutions of initial-boundary value problems for class of nonlinear viscoelastic equations. Appl. Anal. 26 (1987), 33–43.
DOI 10.1080/00036818708839699 |
MR 0916897
[8] P. Ring, P. Schuck:
The Nuclear Many-Body Problem. Springer Verlag, 1980.
MR 0611683
[9] E. Sureau: La matière nucléaire. Hermann, 1998.
[10] G. Ströhmer, W. M. Zajaczkowski:
On the existence and properties of the rotationally symmetric equilibrium states of compressible barotropic self-gravitating fluids. Indiana Math. Journal 46 (1997), 1181–1220.
MR 1631576
[11] G. Ströhmer, W. M. Zajaczkowski:
Local existence of solutions of free boundary problem for the equations of compressible barotropic viscous self-gravitating fluids. Preprint (1998).
MR 1683284
[12] G. Ströhmer, W. M. Zajaczkowski: On stability of certain equilibrium solution for compressible barotropic viscous self-gravitating fluid motions bounded by a free surface. Preprint (1998).
[13] C. Y. Wong, J. A. Maruhn, T. A. Welton: Dynamics of nuclear fluids. I. Foundations. Nucl. Phys. A253 (1975), 469–489.