Previous |  Up |  Next

Article

Title: Simplified models of quantum fluids in nuclear physics (English)
Author: Ducomet, B.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 323-336
Summary lang: English
.
Category: math
.
Summary: We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods. (English)
Keyword: compressible-Navier-Stokes-Schrödinger
Keyword: time-dependent-Hartree-Fock approximation
Keyword: local existence
Keyword: global existence
MSC: 35Q35
MSC: 74D10
MSC: 76D05
MSC: 76N15
MSC: 76Y05
MSC: 81V35
MSC: 82D15
idZBL: Zbl 1050.76063
idMR: MR1844272
DOI: 10.21136/MB.2001.134011
.
Date available: 2009-09-24T21:51:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134011
.
Reference: [1] P. Bonche, S. Koonin, J. W. Negele: One-dimensional nuclear dynamics in the TDHF approximation.Phys. Rev. C 13 (1976), 1226–1258. 10.1103/PhysRevC.13.1226
Reference: [2] N. L. Balazs, B. Schürmann, K. Dietrich, L. P. Csernai: Scaling properties in the hydrodynamical description of heavy-ion reactions.Nucl. Phys. A424 (1984), 605–626. 10.1016/0375-9474(84)90012-5
Reference: [3] J. Dechargé, D. Gogny: Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei.Phys. Rev. C 21 (1980), 1568–1593. 10.1103/PhysRevC.21.1568
Reference: [4] B. Ducomet: Global existence for a simplified model of nuclear fluid in one dimension.J. Math. Fluid Mech. 2 (2000), 1–15. Zbl 0974.76013, MR 1755864, 10.1007/s000210050017
Reference: [5] B. Ducomet, W. M. Zajaczkowski: On simplified models of nuclear fluids. In preparation..
Reference: [6] A. L. Fetter, J. D. Walecka: Quantum Theory of Many-Particle Systems.McGraw-Hill, 1971.
Reference: [7] K. Kuttler, D. Hicks: Weak solutions of initial-boundary value problems for class of nonlinear viscoelastic equations.Appl. Anal. 26 (1987), 33–43. MR 0916897, 10.1080/00036818708839699
Reference: [8] P. Ring, P. Schuck: The Nuclear Many-Body Problem.Springer Verlag, 1980. MR 0611683
Reference: [9] E. Sureau: La matière nucléaire.Hermann, 1998.
Reference: [10] G. Ströhmer, W. M. Zajaczkowski: On the existence and properties of the rotationally symmetric equilibrium states of compressible barotropic self-gravitating fluids.Indiana Math. Journal 46 (1997), 1181–1220. MR 1631576
Reference: [11] G. Ströhmer, W. M. Zajaczkowski: Local existence of solutions of free boundary problem for the equations of compressible barotropic viscous self-gravitating fluids.Preprint (1998). MR 1683284
Reference: [12] G. Ströhmer, W. M. Zajaczkowski: On stability of certain equilibrium solution for compressible barotropic viscous self-gravitating fluid motions bounded by a free surface.Preprint (1998).
Reference: [13] C. Y. Wong, J. A. Maruhn, T. A. Welton: Dynamics of nuclear fluids. I. Foundations.Nucl. Phys. A253 (1975), 469–489.
.

Files

Files Size Format View
MathBohem_126-2001-2_7.pdf 377.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo