Previous |  Up |  Next

Article

Title: Spectral topologies of dually residuated lattice-ordered monoids (English)
Author: Kühr, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 4
Year: 2004
Pages: 379-391
Summary lang: English
.
Category: math
.
Summary: Dually residuated lattice-ordered monoids ($DR\ell $-monoids for short) generalize lattice-ordered groups and include for instance also $GMV$-algebras (pseudo $MV$-algebras), a non-commutative extension of $MV$-algebras. In the present paper, the spectral topology of proper prime ideals is introduced and studied. (English)
Keyword: $DR\ell $-monoid
Keyword: prime ideal
Keyword: spectrum
MSC: 03G10
MSC: 03G25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1080.06023
idMR: MR2102611
DOI: 10.21136/MB.2004.134046
.
Date available: 2009-09-24T22:16:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134046
.
Reference: [1] R. Balbes, P. Dwinger: Distributive Lattices.University of Missouri Press, Columbia, 1974. MR 0373985
Reference: [2] R. L. O. Cignoli, I. M. L. D’Ottawiano, D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer, Dordrecht, 2000.
Reference: [3] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $BL$-algebras: Part I.Mult. Valued Log. 8 (2002), 673–714. MR 1948853
Reference: [4] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo $BL$-algebras: Part II.Mult. Valued Log. 8 (2002), 717–750. MR 1948854
Reference: [5] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [6] G. Georgescu, A. Iorgulescu: Pseudo $MV$-algebras.Mult. Valued Log. 6 (2001), 95–135. MR 1817439
Reference: [7] A. M. W. Glass: Partially Ordered Groups.World Scientific, Singapore, 1999. Zbl 0933.06010, MR 1791008
Reference: [8] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht, 1998. MR 1900263
Reference: [9] P. Hájek: Basic fuzzy logic and $BL$-algebras.Soft Comput. 2 (1998), 124–128. 10.1007/s005000050043
Reference: [10] T. Kovář: A General Theory of Dually Residuated Lattice Ordered Monoids.Ph.D. Thesis, Palacký Univ., Olomouc, 1996.
Reference: [11] J. Kühr: Ideals of non-commutative $DR\ell $-monoids.(to appear).
Reference: [12] J. Kühr: Prime ideals and polars in $DR\ell $-monoids and pseudo $BL$-algebras.Math. Slovaca 53 (2003), 233–246. MR 2025020
Reference: [13] J. Rachůnek: Spectra of autometrized lattice algebras.Math. Bohem. 123 (1998), 87–94. MR 1618727
Reference: [14] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [15] J. Rachůnek: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids.Math. Bohem. 126 (2001), 561–569. MR 1970259
Reference: [16] J. Rachůnek: A non-commutative generalization of $MV$-algebras.Czechoslovak Math. J. 52 (2002), 255–273. Zbl 1012.06012, MR 1905434, 10.1023/A:1021766309509
Reference: [17] J. Rachůnek: Prime spectra of non-commutative generalizations of $MV$-algebras.Algebra Univers. 48 (2002), 151–169. Zbl 1058.06015, MR 1929902, 10.1007/PL00012447
Reference: [18] J. T. Snodgrass, C. Tsinakis: Finite-valued algebraic lattices.Algebra Univers. 30 (1993), 311–318. MR 1225870
Reference: [19] K. L. N. Swamy: Dually residuated lattice ordered semigroups I.Math. Ann. 159 (1965), 105–114. MR 0183797, 10.1007/BF01360284
.

Files

Files Size Format View
MathBohem_129-2004-4_4.pdf 355.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo