Previous |  Up |  Next

Article

Title: The continuous solutions of a generalized Dhombres functional equation (English)
Author: Reich, L.
Author: Smítal, J.
Author: Štefánková, M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 4
Year: 2004
Pages: 399-410
Summary lang: English
.
Category: math
.
Summary: We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given increasing homeomorphism of an open interval $J\subset (0,\infty )$ and $f\: (0,\infty )\rightarrow J$ is an unknown continuous function. In a series of papers by P. Kahlig and J. Smítal it was proved that the range of any non-constant solution is an interval whose end-points are fixed under $\varphi $ and which contains in its interior no fixed point except for $1$. They also provide a characterization of the class of monotone solutions and prove a necessary and sufficient condition for any solution to be monotone. In the present paper we give a characterization of the class of continuous solutions of this equation: We describe a method of constructing solutions as pointwise limits of solutions which are piecewise monotone on every compact subinterval. And we show that any solution can be obtained in this way. In particular, we show that if there exists a solution which is not monotone then there is a continuous solution which is monotone on no subinterval of a compact interval $I\subset (0,\infty )$. (English)
Keyword: iterative functional equation
Keyword: equation of invariant curves
Keyword: general continuous solution
MSC: 26A18
MSC: 39B12
MSC: 39B22
idZBL: Zbl 1080.39505
idMR: MR2102613
DOI: 10.21136/MB.2004.134048
.
Date available: 2009-09-24T22:16:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134048
.
Reference: [1] J. Dhombres: Applications associatives ou commutatives.C. R. Acad. Sci. Paris Sér. A 281 (1975), 809–812. Zbl 0344.39009, MR 0419662
Reference: [2] P. Kahlig, J. Smítal: On the solutions of a functional equation of Dhombres.Results Math. 27 (1995), 362–367. MR 1331109, 10.1007/BF03322840
Reference: [3] P. Kahlig, J. Smítal: On a parametric functional equation of Dhombres type.Aequationes Math. 56 (1998), 63–68. MR 1628303, 10.1007/s000100050044
Reference: [4] P. Kahlig, J. Smítal: On a generalized Dhombres functional equation.Aequationes Math. 62 (2001), 18–29. MR 1849137, 10.1007/PL00000138
Reference: [5] P. Kahlig, J. Smítal: On a generalized Dhombres functional equation II.Math. Bohem. 127 (2002), 547–555. MR 1942640
Reference: [6] M. Kuczma: Functional Equations in a Single Variable.Polish Scientific Publishers, Warsaw, 1968. Zbl 0196.16403, MR 0228862
Reference: [7] M. Kuczma, B. Choczewski, R. Ger: Iterative Functional Equations.Cambridge University Press, Cambridge, 1990. MR 1067720
.

Files

Files Size Format View
MathBohem_129-2004-4_6.pdf 336.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo