| Title: | Kurzweil’s PU integral as the Lebesgue integral (English) | 
| Author: | Výborný, Rudolf | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 131 | 
| Issue: | 1 | 
| Year: | 2006 | 
| Pages: | 11-14 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | For a merely continuous partition of unity the PU integral is the Lebesgue integral. (English) | 
| Keyword: | Kurzweil’s PU integral | 
| Keyword: | Lebesgue integral | 
| Keyword: | McShane integral | 
| MSC: | 26A39 | 
| MSC: | 26A42 | 
| MSC: | 28A99 | 
| idZBL: | Zbl 1112.26013 | 
| idMR: | MR2210999 | 
| DOI: | 10.21136/MB.2006.134077 | 
| . | 
| Date available: | 2009-09-24T22:23:35Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134077 | 
| . | 
| Reference: | [1] Russel A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, 1994. MR 1288751 | 
| Reference: | [2] J. Kurzweil, J. Jarník: A non absolutely convergent integral which admits transformation and can be used on manifolds.Czechoslovak Math. J. 35 (1985), 116–139. MR 0779340 | 
| Reference: | [3] J. Kurzweil, J. Jarník: A new and more powerful concept of the PU integral.Czechoslovak Math. J. 38 (1988), 8–48. MR 0925939 | 
| Reference: | [4] J. Kurzweil, J. Mawhin, W. Pfeffer: An integral defined by approximating BV partitions of unity.Czechoslovak Math. J. 41 (1991), 695–712. MR 1134958 | 
| Reference: | [5] Lee, Peng Yee, Rudolf Výborný: The Integral: An Easy Approach after Kurzweil and Henstock.Cambridge University Press, Cambridge, UK, 2000. MR 1756319 | 
| . |