Title:
|
A new form of fuzzy $\alpha $-compactness (English) |
Author:
|
Shi, Fu-Gui |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
131 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
15-28 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A new form of $\alpha $-compactness is introduced in $L$-topological spaces by $\alpha $-open $L$-sets and their inequality where $L$ is a complete de Morgan algebra. It doesn’t rely on the structure of the basis lattice $L$. It can also be characterized by means of $\alpha $-closed $L$-sets and their inequality. When $L$ is a completely distributive de Morgan algebra, its many characterizations are presented and the relations between it and the other types of compactness are discussed. Countable $\alpha $-compactness and the $\alpha $-Lindelöf property are also researched. (English) |
Keyword:
|
$L$-topology |
Keyword:
|
compactness |
Keyword:
|
$\alpha $-compactness |
Keyword:
|
countable $\alpha $-compactness |
Keyword:
|
$\alpha $-Lindelöf property |
Keyword:
|
$\alpha $-irresolute map |
Keyword:
|
$\alpha $-continuous map |
MSC:
|
54A40 |
MSC:
|
54D35 |
idZBL:
|
Zbl 1108.54009 |
idMR:
|
MR2211000 |
DOI:
|
10.21136/MB.2006.134081 |
. |
Date available:
|
2009-09-24T22:23:43Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134081 |
. |
Reference:
|
[1] H. Aygün: $\alpha $-compactness in $L$-fuzzy topological spaces.Fuzzy Sets Syst. 116 (2000), 317–324. MR 1792325 |
Reference:
|
[2] K. K. Azad: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weak continuity.J. Math. Anal. Appl. 82 (1981), 14–32. MR 0626738, 10.1016/0022-247X(81)90222-5 |
Reference:
|
[3] S. Z. Bai: Fuzzy strongly semiopen sets and fuzzy strong semicontinuity.Fuzzy Sets Syst. 52 (1992), 345–351. Zbl 0795.54009, MR 1198195 |
Reference:
|
[4] S. Z. Bai: The SR-compactness in $L$-fuzzy topological spaces.Fuzzy Sets Syst. 87 (1997), 219–225. Zbl 0912.54009, MR 1442416 |
Reference:
|
[5] P. Dwinger: Characterization of the complete homomorphic images of a completely distributive complete lattice. I.Indagationes Mathematicae (Proceedings) 85 (1982), 403–414. Zbl 0503.06012, MR 0683528, 10.1016/1385-7258(82)90034-8 |
Reference:
|
[6] G. Gierz, et al.: A Compendium of Continuous Lattices.Springer, Berlin, 1980. Zbl 0452.06001, MR 0614752 |
Reference:
|
[7] S. R. T. Kudri: Compactness in $L$-fuzzy topological spaces.Fuzzy Sets Syst. 67 (1994), 329–336. Zbl 0842.54011, MR 1304566 |
Reference:
|
[8] S. G. Li, S. Z. Bai, N. Li: The near SR-compactness axiom in $L$-topological spaces.Fuzzy Sets Syst. 147 (2004), 307–316. MR 2089294 |
Reference:
|
[9] Y. M. Liu, M. K. Luo: Fuzzy Topology.World Scientific, Singapore, 1997. MR 1643076 |
Reference:
|
[10] R. Lowen: A comparison of different compactness notions in fuzzy topological spaces.J. Math. Anal. Appl. 64 (1978), 446–454. Zbl 0381.54004, MR 0497443, 10.1016/0022-247X(78)90052-5 |
Reference:
|
[11] S. N. Maheshwari, S. S. Thakur: On $\alpha $-irresolute mappings.Tamkang J. Math. 11 (1981), 209–214. MR 0696921 |
Reference:
|
[12] S. N. Maheshwari, S. S. Thakur: On $\alpha $-compact spaces.Bull. Inst. Math. Acad. Sinica 13 (1985), 341–347. MR 0866569 |
Reference:
|
[13] O. Njåstad: On some classes of nearly open sets.Pacific J. Math. 15 (1965), 961–970. MR 0195040, 10.2140/pjm.1965.15.961 |
Reference:
|
[14] A. S. B. Shahana: On fuzzy strong semicontinuity and fuzzy precontinuity.Fuzzy Sets Syst. 44 (1991), 303–308. MR 1140864 |
Reference:
|
[15] F.-G. Shi: Fuzzy compactness in $L$-topological spaces.Fuzzy Sets Syst., submitted. Zbl 1080.54004 |
Reference:
|
[16] F.-G. Shi: Countable compactness and the Lindelöf property of $L$-fuzzy sets.Iran. J. Fuzzy Syst. 1 (2004), 79–88. Zbl 1202.54007, MR 2138608 |
Reference:
|
[17] F.-G. Shi: Theory of $L_\beta $-nested sets and $L_\alpha $-nested and their applications.Fuzzy Systems and Mathematics 4 (1995), 65–72. (Chinese) MR 1384670 |
Reference:
|
[18] S. S. Thakur, R. K. Saraf: $\alpha $-compact fuzzy topological spaces.Math. Bohem. 120 (1995), 299–303. MR 1369688 |
Reference:
|
[19] G. J. Wang: Theory of $L$-fuzzy Topological Spaces.Shanxi Normal University Press, Xian, 1988. (Chinese) |
. |