Previous |  Up |  Next

Article

Title: On the algebra of $A^k$-functions (English)
Author: Backlund, Ulf
Author: Fällström, Anders
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 1
Year: 2006
Pages: 49-61
Summary lang: English
.
Category: math
.
Summary: For a domain $\Omega \subset {\mathbb{C}}^n$ let $H(\Omega )$ be the holomorphic functions on $\Omega $ and for any $k\in \mathbb{N}$ let $A^k(\Omega )=H(\Omega )\cap C^k(\overline{\Omega })$. Denote by ${\mathcal{A}}_D^k(\Omega )$ the set of functions $f\: \Omega \rightarrow [0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nonincreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. By ${\mathcal{A}}_I^k(\Omega )$ denote the set of functions $f\: \Omega \rightarrow (0,\infty )$ with the property that there exists a sequence of functions $f_j\in A^k(\Omega )$ such that $\lbrace |f_j|\rbrace $ is a nondecreasing sequence and such that $ f(z)=\lim _{j\rightarrow \infty }|f_j(z)|$. Let $k\in \mathbb{N}$ and let $\Omega _1$ and $\Omega _2$ be bounded $A^k$-domains of holomorphy in $\mathbb{C}^{m_1}$ and $\mathbb{C}^{m_2}$ respectively. Let $g_1\in {\mathcal{A}}_D^k(\Omega _1)$, $g_2\in {\mathcal{A}}_I^k(\Omega _1)$ and $h\in {\mathcal{A}}_D^k(\Omega _2)\cap {\mathcal{A}}_I^k(\Omega _2)$. We prove that the domains $\Omega =\left\rbrace (z,w)\in \Omega _1\times \Omega _2\: g_1(z)<h(w)<g_2(z)\right\lbrace $ are $A^k$-domains of holomorphy if $\mathop {\mathrm int}\overline{\Omega }=\Omega $. We also prove that under certain assumptions they have a Stein neighbourhood basis and are convex with respect to the class of $A^k$-functions. If these domains in addition have $C^1$-boundary, then we prove that the $A^k$-corona problem can be solved. Furthermore we prove two general theorems concerning the projection on ${\mathbb{C}}^n$ of the spectrum of the algebra $A^k$. (English)
Keyword: $A^k$-domains of holomorphy
Keyword: $A^k$-convexity
MSC: 32A38
MSC: 32D05
MSC: 46J10
idZBL: Zbl 1109.32004
idMR: MR2211003
DOI: 10.21136/MB.2006.134082
.
Date available: 2009-09-24T22:24:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134082
.
Reference: [1] Hans J. Bremermann: Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum von $n$ komplexen Veränderlichen.Math. Ann. 128 (1954), 63–91. MR 0071088, 10.1007/BF01360125
Reference: [2] David Catlin: Boundary behavior of holomorphic functions on pseudoconvex domains.J. Differential Geom. 15 (1980 1981), 605–625. MR 0628348, 10.4310/jdg/1214435847
Reference: [3] Henri Cartan, Peter Thullen: Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen: Regularitäts- und Konvergenzbereiche.Math. Ann 106 (1932), 617–647. MR 1512777, 10.1007/BF01455905
Reference: [4] Theodore W. Gamelin: Uniform algebras.Prentice-Hall Inc., Englewood Cliffs, N. J., 1969. MR 0410387
Reference: [5] Monique Hakim, Nessim Sibony: Spectre de ${A}(\bar{\omega })$ pour des domaines bornés faiblement pseudoconvexes réguliers.J. Funct. Anal. 37 (1980), 127–135. MR 0578928, 10.1016/0022-1236(80)90037-3
Reference: [6] Marek Jarnicki, Peter Pflug: On $n$-circled ${H}^\infty $-domains of holomorphy.Ann. Polon. Math. 65 (1997), 253–264. MR 1441180, 10.4064/ap-65-3-253-264
Reference: [7] François Norguet: Sur les domaines d’holomorphie des fonctions uniformes de plusieurs variables complexes. (Passage du local au global.).Bull. Soc. Math. France 82 (1954), 137–159. MR 0071087, 10.24033/bsmf.1448
Reference: [8] Kiyoshi Oka: Sur les fonctions de plusieurs variables. ix. domaines finis sans points critique interieur.Jap. J. Math. 23 (1953), 97–155. MR 0071089, 10.4099/jjm1924.23.0_97
Reference: [9] Boris V. Shabat: Introduction to complex analysis.Part II, American Mathematical Society, Providence, RI, 1992, Functions of several variables, Translated from the third (1985) Russian edition by J. S. Joel. MR 1192135
Reference: [10] Nessim Sibony: Prolongement analytique des fonctions holomorphes bornées.C. R. Acad. Sci. Paris Sér. A–B 275 (1972), A973–A976. MR 0318515
Reference: [11] Peter Thullen: Zur Theorie der Funktionen zweier komplexer Veränderlichen. Die Regularitätshullen.Math. Ann. 106 (1932), 64–72. MR 1512749, 10.1007/BF01455877
.

Files

Files Size Format View
MathBohem_131-2006-1_6.pdf 367.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo