Previous |  Up |  Next

Article

Title: Modal operators on MV-algebras (English)
Author: Harlenderová, Magdalena
Author: Rachůnek, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 1
Year: 2006
Pages: 39-48
Summary lang: English
.
Category: math
.
Summary: Modal operators on Heyting algebras were introduced by Macnab. In this paper we introduce analogously modal operators on MV-algebras and study their properties. Moreover, modal operators on certain derived structures are investigated. (English)
Keyword: MV-algebra
Keyword: modal operator
Keyword: closure operator
Keyword: residuated $\ell $-monoid
Keyword: Heyting algebra
MSC: 06D25
MSC: 06D35
MSC: 06F05
idZBL: Zbl 1112.06014
idMR: MR2211002
DOI: 10.21136/MB.2006.134083
.
Date available: 2009-09-24T22:24:02Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134083
.
Reference: [1] Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many- valued Reasoning.Kluwer, Dordrecht, 2000. MR 1786097
Reference: [2] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369
Reference: [3] Macnab, D. S.: Modal operators on Heyting algebras.Algebra Univers. 12 (1981), 5–29. Zbl 0459.06005, MR 0608645, 10.1007/BF02483860
Reference: [4] Rachůnek, J.: Modal operators on ordered sets.Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 24 (1985), 9–14. MR 0879015
Reference: [5] Rachůnek, J.: $DR\ell $-semigroups and MV-algebras.Czechoslovak Math. J. 48 (1998), 365–372. MR 1624268, 10.1023/A:1022801907138
Reference: [6] Rachůnek, J.: MV-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [7] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated $\ell $-monoids (submitted)..
Reference: [8] Rachůnek, J., Švrček, F.: MV-algebras with additive closure operators.Acta Univ. Palacki. Olomuc., Fac. Rer. Mat., Math. 39 (2000), 183–189. MR 1826361
.

Files

Files Size Format View
MathBohem_131-2006-1_5.pdf 303.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo