Article
Keywords:
Henstock integral; probability; Brownian motion
Summary:
This essay outlines a generalized Riemann approach to the analysis of random variation and illustrates it by a construction of Brownian motion in a new and simple manner.
References:
                        
[1] Gordon, R.: 
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. American Mathematical Society, 1994. 
MR 1288751 | 
Zbl 0807.26004[2] Henstock, R., Muldowney, P., Skvortsov, V. A.: 
Partitioning infinite-dimensional spaces for generalized Riemann integration. (to appear). 
MR 2268364[3] Karatzas, I., Shreve, S. E.: 
Brownian Motion and Stochastic Calculus. Springer, Berlin, 1988. 
MR 0917065[4] Kolmogorov, A. N.: Foundations of the Theory of Probability, 1933. 
[5] Muldowney, P.: 
A General Theory of Integration in Function Spaces, Including Wiener and Feynman Integration. Pitman Research Notes in Mathematics no. 153, Harlow, 1987. 
MR 0887535 | 
Zbl 0623.28008[6] Muldowney, P.: 
Topics in probability using generalised Riemann integration. Math. Proc. R. Ir. Acad. 99(A)1 (1999), 39–50. 
MR 1883062 | 
Zbl 0965.60010[8] Muldowney, P., Skvortsov, V. A.: 
Lebesgue integrability implies generalized Riemann integrability in ${\mathbf R}^{[0,1]}$. Real Anal. Exch. 27 (2001/2002), 223–234. 
MR 1887853