Previous |  Up |  Next

Article

Title: A comparison of three recent selection theorems (English)
Author: Maniscalco, Caterina
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 2
Year: 2007
Pages: 177-183
Summary lang: English
.
Category: math
.
Summary: We compare a recent selection theorem given by Chistyakov using the notion of modulus of variation, with a selection theorem of Schrader based on bounded oscillation and with a selection theorem of Di Piazza-Maniscalco based on bounded ${\mathcal A},\Lambda $-oscillation. (English)
Keyword: variation
Keyword: oscillation
Keyword: modulus of variation
Keyword: selection theorem
MSC: 26A45
MSC: 40A30
idZBL: Zbl 1174.26311
idMR: MR2338804
DOI: 10.21136/MB.2007.134188
.
Date available: 2009-09-24T22:30:34Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134188
.
Reference: [1] Bongiorno B., Vetro P.: Su un teorema di F. Riesz.Atti Acc. Sc. Lett. Arti Palermo, Ser. IV 37 (1977–78), 3–13. MR 0624502
Reference: [2] Chanturiya Z. A.: The modulus of variation of a function and its application in the theory of Fourier series.Soviet. Math. Dokl. 15 (1974), 67–71. Zbl 0295.26008
Reference: [3] Chistyakov V. V.: A selection principle for functions of a real variable.Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 25–43. Zbl 1115.26006, MR 2199030
Reference: [4] Chistyakov V. V.: The optimal form of selection principle for functions of a real variable.J. Math. Anal. Appl. 310 (2005), 609–625. MR 2022947, 10.1016/j.jmaa.2005.02.028
Reference: [5] Di Piazza L., Maniscalco C.: Selection theorems, based on generalized variation and oscillation.Rend. Circ. Mat. Palermo, Ser. II 35 (1986), 386–396. MR 0929621, 10.1007/BF02843906
Reference: [6] Helly E.: Über linear Funktionaloperationen.Sitzungsber. Naturwiss. Kl. Kaiserlichen Akad. Wiss. Wien 121 (1912), 265–297.
Reference: [7] Henstock H.: The General Theory of Integration.Clarendon Press, Oxford, U.K., 1991. Zbl 0745.26006, MR 1134656
Reference: [8] Musielak J., Orlicz W.: On generalized variations (I).Studia Math. 18 (1959), 11–41. MR 0104771, 10.4064/sm-18-1-11-41
Reference: [9] Schrader K.: A generalization of the Helly selection theorem.Bull. Amer. Math. Soc. 78 (1972), 415–419. Zbl 0236.40001, MR 0299740, 10.1090/S0002-9904-1972-12923-9
Reference: [10] Waterman D.: On $\Lambda $-bounded variation.Studia Math. 57 (1976), 33–45. Zbl 0341.26008, MR 0417355, 10.4064/sm-57-1-33-45
.

Files

Files Size Format View
MathBohem_132-2007-2_4.pdf 299.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo