Previous |  Up |  Next

Article

Title: On $\gamma $-labelings of oriented graphs (English)
Author: Okamoto, Futaba
Author: Zhang, Ping
Author: Saenpholphat, Varaporn
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 2
Year: 2007
Pages: 185-203
Summary lang: English
.
Category: math
.
Summary: Let $D$ be an oriented graph of order $n$ and size $m$. A $\gamma $-labeling of $D$ is a one-to-one function $f\: V(D) \rightarrow \lbrace 0, 1, 2, \ldots , m\rbrace $ that induces a labeling $f^{\prime }\: E(D) \rightarrow \lbrace \pm 1, \pm 2, \ldots , \pm m\rbrace $ of the arcs of $D$ defined by $f^{\prime }(e) = f(v)-f(u)$ for each arc $e =(u, v)$ of $D$. The value of a $\gamma $-labeling $f$ is $\mathop {\mathrm val}(f) = \sum _{e \in E(G)} f^{\prime }(e).$ A $\gamma $-labeling of $D$ is balanced if the value of $f$ is 0. An oriented graph $D$ is balanced if $D$ has a balanced labeling. A graph $G$ is orientably balanced if $G$ has a balanced orientation. It is shown that a connected graph $G$ of order $n \ge 2$ is orientably balanced unless $G$ is a tree, $n \equiv 2 \hspace{4.44443pt}(\@mod \; 4)$, and every vertex of $G$ has odd degree. (English)
Keyword: oriented graph
Keyword: $\gamma $-labeling
Keyword: balanced $\gamma $-labeling
Keyword: balanced oriented graph
Keyword: orientably balanced graph
MSC: 05C20
MSC: 05C78
idZBL: Zbl 1174.05056
idMR: MR2338805
DOI: 10.21136/MB.2007.134191
.
Date available: 2009-09-24T22:30:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134191
.
Reference: [1] G. Chartrand, D. Erwin, D. W. VanderJagt, P. Zhang: $\gamma $-labelings of graphs.Bull. Inst. Combin. Appl. 44 (2005), 51–68. MR 2139387
Reference: [2] G. Chartrand, D. Erwin, D. W. VanderJagt, P. Zhang: On $\gamma $-labelings of trees.Discuss. Math., Graph Theory 25 (2005), 363–383. MR 2233002, 10.7151/dmgt.1289
Reference: [3] G. Chartrand, P. Zhang: Introduction to Graph Theory.McGraw-Hill, Boston, 2005.
Reference: [4] J. A. Gallian,: A dynamic survey of graph labeling.Electron. J. Combin. 5 (1998), Dynamic Survey 6, pp. 43. Zbl 0953.05067, MR 1668059
Reference: [5] S. W. Golomb: How to number a graph.Graph Theory Comp. Academic Press, New York, 1972, pp. 23–37. Zbl 0293.05150, MR 0340107
Reference: [6] A. Rosa: On certain valuations of the vertices of a graph.Theory Graphs, Proc. Int. Symp. Rome 1966, Gordon and Breach, New York, 1967, pp. 349–355. Zbl 0193.53204, MR 0223271
.

Files

Files Size Format View
MathBohem_132-2007-2_5.pdf 398.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo