Previous |  Up |  Next

Article

Title: A mixed finite element method for plate bending with a unilateral inner obstacle (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 1
Year: 1994
Pages: 25-44
Summary lang: English
.
Category: math
.
Summary: A unilateral problem of an elastic plate above a rigid interior obstacle is solved on the basis of a mixed variational inequality formulation. Using the saddle point theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections and moments, an iterative procedure is proposed, each step of which consists in a linear plate problem. The existence, uniqueness and some convergence analysis is presented. (English)
Keyword: unilateral plate problem
Keyword: inner obstacle
Keyword: mixed finite elements
Keyword: Herrmann-Johnson mixed model
Keyword: fourth order variational inequality
MSC: 49D29
MSC: 65N30
MSC: 73K10
MSC: 74S05
idZBL: Zbl 0796.73062
idMR: MR1254745
DOI: 10.21136/AM.1994.134241
.
Date available: 2009-09-22T17:42:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134241
.
Reference: [1] Brezzi, F.: On the existence, uniqueness and approximations of saddle-point problems arising from Lagrange multipliers.vol. 8-R2, R. A. I. R. O., 1974, pp. 129–151. MR 0365287
Reference: [2] Brezzi, F.–Raviart, P. A.: Mixed finite element methods for 4th order elliptic equations.Topics in Numer. Anal., vol. III (ed. by J. J. H. Miller), Academic Press, London, 1977, pp. 33–56. Zbl 0434.65085, MR 0657975
Reference: [3] Ekeland, I.–Temam, R.: Analyse convexe et problèmes variationnels.Dunod, Paris, 1974. Zbl 0281.49001
Reference: [4] Glowinski, R.–Lions, J. L.–Trémolières, R.: Numerical analysis of variational inequalities.North-Holland, Amsterdam, 1981. Zbl 0463.65046, MR 0635927
Reference: [5] Haslinger, J.: Mixed formulation of variational inequalities and its approximation.Apl. Mat. 26 (1981), 462–475. MR 0634283
Reference: [6] Nečas, J.: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [7] Comodi, M. I.: Approximation of a bending plate problem with a boundary unilateral constraint.Numer. Math. 47 (1985), 435–458. Zbl 0581.73022, MR 0808562, 10.1007/BF01389591
Reference: [8] Ciarlet, P.G.: The finite element method for elliptic problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
.

Files

Files Size Format View
AplMat_39-1994-1_3.pdf 1.624Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo