Article
Keywords:
unilateral plate problem; inner obstacle; mixed finite elements; Herrmann-Johnson mixed model; fourth order variational inequality
Summary:
A unilateral problem of an elastic plate above a rigid interior obstacle is solved on the basis of a mixed variational inequality formulation. Using the saddle point theory and the Herrmann-Johnson scheme for a simultaneous computation of deflections and moments, an iterative procedure is proposed, each step of which consists in a linear plate problem. The existence, uniqueness and some convergence analysis is presented.
References:
[1] Brezzi, F.:
On the existence, uniqueness and approximations of saddle-point problems arising from Lagrange multipliers. vol. 8-R2, R. A. I. R. O., 1974, pp. 129–151.
MR 0365287
[2] Brezzi, F.–Raviart, P. A.:
Mixed finite element methods for 4th order elliptic equations. Topics in Numer. Anal., vol. III (ed. by J. J. H. Miller), Academic Press, London, 1977, pp. 33–56.
MR 0657975 |
Zbl 0434.65085
[3] Ekeland, I.–Temam, R.:
Analyse convexe et problèmes variationnels. Dunod, Paris, 1974.
Zbl 0281.49001
[4] Glowinski, R.–Lions, J. L.–Trémolières, R.:
Numerical analysis of variational inequalities. North-Holland, Amsterdam, 1981.
MR 0635927 |
Zbl 0463.65046
[5] Haslinger, J.:
Mixed formulation of variational inequalities and its approximation. Apl. Mat. 26 (1981), 462–475.
MR 0634283
[6] Nečas, J.:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967.
MR 0227584
[8] Ciarlet, P.G.:
The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058