Previous |  Up |  Next

Article

Title: On systems governed by two alternating vector fields (English)
Author: Klíč, Alois
Author: Řeháček, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 1
Year: 1994
Pages: 57-64
Summary lang: English
.
Category: math
.
Summary: We investigate the nonautonomous periodic system of ODE’s of the form $\dot{x}=\vec{v}(x)+r_{p}(t)(\vec{w}(x)-\vec{v}(x))$, where $r_{p}(t)$ is a $2p$-periodic function defined by $r_{p}(t)=0$ for $t\in \langle 0,p\rangle $, $r_{p}(t)=1$ for $t\in (p,2p)$ and the vector fields $\vec{v}$ and $\vec{w}$ are related by an involutive diffeomorphism. (English)
Keyword: periodic system
Keyword: period map
Keyword: invariant set
Keyword: flow
MSC: 34A34
MSC: 34C25
MSC: 58F08
idZBL: Zbl 0797.34047
idMR: MR1254747
DOI: 10.21136/AM.1994.134243
.
Date available: 2009-09-22T17:42:45Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134243
.
Reference: [1] W.M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry.Academic Press, New York, 1975. Zbl 0333.53001, MR 0426007
Reference: [2] J.Řeháček, M. Kubíček, M. Marek: Modelling of a Tubular Catalytic Reactor with Flow Reversal.Preprint 92-001, AHPCRC, University of Minnesota, Minneapolis.
Reference: [3] C. Sparrow: The Lorenz Equations Bifurcations, Chaos and Strange Attractors.Springer-Verlag, New York, 1982. Zbl 0504.58001, MR 0681294
Reference: [4] V. A. Pliss: Integralnye mnozhestva periodicheskikh sistem differencialnykh uravnenij.Nauka, Moscow, 1977. (Russian)
Reference: [5] J. Kurzweil: Ordinary differential equations.SNTL, Prague, 1978. (Czech) Zbl 0401.34001, MR 0617010
Reference: [6] J. Kurzweil, O. Vejvoda: Periodicheskie resheniya sistem differencialnykh uravnenij.Czech. Math. J. 5 (1955), no. 3. (Russian) MR 0076127
.

Files

Files Size Format View
AplMat_39-1994-1_5.pdf 818.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo