Article
Keywords:
Kalmbach measurability; Boolean algebra; orthomodular lattice
Summary:
In this note we show that, for an arbitrary orthomodular lattice $L$, when $\mu $ is a faithful, finite-valued outer measure on $L$, then the Kalmbach measurable elements of $L$ form a Boolean subalgebra of the centre of $L$.
References:
                        
[1] E. Beltrametti, G. Cassinelli: 
The logic of quantum mechanics. Addison Wesley, Reading MA, 1981. 
MR 0635780[2] L. Beran: 
Orthomodular Lattices. Algebraic approach, Academia, Prague and Reidel, Dordrecht, 1984. 
MR 0785005[6] P. Pták, S. Pulmannova: 
Orthomodular structures as quantum logics. Kluwer, Dordrecht, 1991. 
MR 1176314