[1] S. Adjerid, J.E. Flaherty: 
A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23 (1986), 778–796. 
DOI 10.1137/0723050 | 
MR 0849282[2] S. Adjerid, J.E. Flaherty, Y.J. Wang: 
A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21. 
DOI 10.1007/BF01385737 | 
MR 1217436[3] I. Babuška, W.C. Rheinboldt: 
A posteriori error estimates for the finite element method. Internat. J. Numer. Methods Engrg. 12 (1978), 1597–1615. 
DOI 10.1002/nme.1620121010[4] M. Bieterman, I. Babuška: 
The finite element method for parabolic equations I, II. Numer. Math. 40 (1982), 339–371, 373–406. 
DOI 10.1007/BF01396451[5] F.R. Gantmacher: Matrix Theory. Moskva, Nauka, 1966. (Russian)
[6] A.C. Hindmarsh: 
LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM SIGNUM Newsletter 15 (1980), 10–11. 
DOI 10.1145/1218052.1218054[7] J.T. Oden, G.F. Carey: 
Finite Elements: Mathematical Aspects, Vol. 4. Englewood Cliffs, NJ, Prentice-Hall, 1983. 
MR 0767804[8] L.R. Petzold: 
A Description of DDASSL: A Differential/Algebraic System Solver. Sandia Report No. Sand 82-8637, Livermore, CA, Sandia National Laboratory, 1982. 
MR 0751605[9] B. Szabo, I. Babuška: 
Finite Element Analysis. New York, J. Wiley & Sons, 1991. 
MR 1164869[10] V. Thomée: 
Negative norm estimates and superconvergence in Galerkin methods for parabolic problems. Math. Comp. 34 (1980), 93–113. 
DOI 10.2307/2006222 | 
MR 0551292[11] R. Wait, A.R. Mitchell: 
Finite Element Analysis and Applications. Chichester, J. Wiley & Sons, 1985. 
MR 0817440