[1] A. Das, K. Roy:
Note on the forced vibration of an orthotropic plate on an elastic foundation. Journal of Sound and Vibration 66(4) (1979), 521–525.
DOI 10.1016/0022-460X(79)90696-5
[2] M. Engliš, J. Peetre:
A Green’s function for the annulus. Research report 95/7002, Department of Mathematics, Lund University (ISRN LUTFD2/TFMA) (53 pages), submitted (1995).
MR 1441874
[3] K.-E. Fällström: Material parameters and defects in anisotropic plates determined by holografic Interferometry. Ph.D. Thesis 1990: 86 D, Department of Physics, Luleå University of Technology, 1990.
[4] K.-E. Fällström, O. Lindblom: Material parameters in anisotropic plates determined by using transient bending waves. Research report. Luleå University of Technology (10 pages), submitted 1996.
[5] I.S. Gradshteyn, I.M. Ryzhik: Table of Integrals, Series and Products. Academic Press, 1965.
[6] S.G. Lekhnitskii: Anisotropic Plates, translated by S.W. Tsai and T. Cheron. Gordon and Breach Science Publishers, 1944.
[7] J. Malmquist, V. Stenström, S. Danielsson: Mathematical Analysis, III. Almqvist & Wiksell, 1954, pp. 584–594. (Swedish)
[8] L. Meirovitch: Analytical Methods in Vibration. The MacMillan Company, New York, 1967.
[9] S.V. More:
The symmetrical free vibrations of a thin elastic plate with initial conditions as a generalized function. Indian J. Pure Appl. Math. 10(4) (1979), 431–436.
MR 0527355
[10] Kenneth Olofsson: Pulsed holographic interferometry for the study of bending wave propagation in paper and in tubes. Ph.D. Thesis 1994:144 D, Department of Physics, Luleå University of Technology, 1994.
[11] L.-E. Persson, T. Strömberg: Green’s method applied to the plate equation in mechanics. Comment. Math. Prace Mat 33 (1993), 119–133.
[12] I.N. Sneddon:
The Use of Integral Transforms. McGraw-Hill Company, Inc., New York, 1972.
Zbl 0237.44001
[13] I.N. Sneddon:
The Symmetrical Vibrations of a Thin Elastic Plate. Proceedings of the Cambridge Philosophical Society, Volume 41, Cambridge University Press, 27–42, 1945.
MR 0011882 |
Zbl 0063.07102
[14] I.N. Sneddon:
The Fourier Transform Solution of an Elastic Wave Equation. Proceedings of the Cambridge Philosophical Society, Volume 41, Cambridge University Press, 1945, pp. 239–243.
MR 0013505 |
Zbl 0063.07103
[15] E.M. Stein, G. Weiss:
Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Yersey, 1971.
MR 0304972
[16] E.C. Titchmarsch: The Theory of Functions, Second Edition. Oxford University Press, 1939.