[1] J. Appel, P. A. Zabrejko:
Nonlinear Superposition Operators. Cambridge tracts inmathematics 95, Cambridge University Press, Cambridge, 1990.
MR 1066204
[2] S. Campanato:
Sistemi Ellittici in Forma Divergenza. Regolarita all’interno. Quaderni, Pisa, 1980.
MR 0668196 |
Zbl 0453.35026
[3] J. Dalík:
A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems. Appl. Math. 36 (1991), 329–352.
MR 1125636
[4] J. Dalík, J. Daněček, S. Šťastník: The Kiessl model, existence of the classical solution. Sborník konf. Kočovce (1999), to appear.
[5] J. Dalík, J. Daněček, S. Šťastník: A model of simultaneous distribution of moisture and temperature in porous materials. Ceramics (Silikáty) 41 (2) (1997), 41–46.
[6] J. Dalík, J. Svoboda, S. Šťastník: Návrh matematického modelu šíření vlhkosti a tepla v pórovitém prostředí. Preprint (1997).
[7] D. Gawin, P. Baggio, B. A. Schrefler: Modelling heat and moisture transfer in deformable porous building materials. Arch. Civil Eng. XLII, 3 (1996), 325–349.
[8] M. Giaquinta, G. Modica:
Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Ann. Mat. Pura Appl. 149 (1987), 41–59.
MR 0932775
[9] H. Glaser: Graphisches Verfahren zur Untersuchung von Diffusionsvorgängen. Kältetechnik H.10 (1959), 345–349.
[10] J. Kačur:
Solution to strongly nonlinear parabolic problems by a linear approximation scheme. Preprint M2-96, Comenius University Bratislava, Faculty of Mathematics and Physics (1996).
MR 1670689
[11] K. Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen. Dissertation, Universität in Essen (1983).
[12] J. Nečas:
Introduction to the theory of nonlinear elliptic equations. Teubner Texte zur Mathematik 52, Teubner Verlag, Leipzig, 1986.
MR 0874752
[13] J. R. Philip, D. A. de Vries:
Moisture movements in porous materials under temperature gradients. Am. Geophys. Union 38 (1957), 222–232.
DOI 10.1029/TR038i002p00222