[2] H. Brunner:
Iterated collocation methods and their discretization for Volterra integral equations. SIAM J. Numer. Anal. 21 (1984), 1132–1145.
DOI 10.1137/0721070 |
MR 0765511
[3] H. Brunner:
The approximate solution of Volterra equations with nonsmooth solutions. Utilitas Math. 27 (1985), 57–95.
MR 0804372 |
Zbl 0563.65077
[5] H. Brunner, P. J. Van der Houwen:
The Numerical Solution of Volterra Equations. CWI Monographs, Vol. 3. North-Holland, Amsterdam, 1986.
MR 0871871
[7] H. Brunner, Y. Lin, S. Zhang:
Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods. J. Integ. Eqs. Appl 10, 4 (1998), 375–396.
MR 1669667
[8] H. Brunner, A. Pedas, G. Vainikko: The piecewise polynomial collocation methods for nonlinear weakly singular Volterra equations. Research Reports A 392, Institute of Mathematics, Helsinki University of Technology, 1997.
[9] H. Brunner, N. Yan:
On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations. J. Comput. Appl. Math. 67 (1996), 187–189.
DOI 10.1016/0377-0427(96)00012-X |
MR 1388148
[10] Q. Hu:
Stieltjes derivatives and $\beta $-polynomial spline collocation for Volterra integro-differential equations with singularities. SIAM J. Numer. Anal. 33, 1 (1996), 208–220.
DOI 10.1137/0733012 |
MR 1377251
[11] M. Křížek, P. Neittaanmäki:
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Essex, 1990.
MR 1066462
[12] Q. Lin, I.H. Sloan, R. Xie:
Extrapolation of the iterated-collocation method for integral equations of the second kind. SIAM J. Numer. Anal. 27, 6 (1990), 1535–1541.
DOI 10.1137/0727090 |
MR 1080337
[14] Q. Lin, S. Zhang, N. Yan:
Methods for improving approximate accuracy for hyperbolic integrodifferential equations. Systems Sci. Math. Sci., 10, 3 (1997), 282–288.
MR 1469188
[15] Q. Lin, S. Zhang, N. Yan:
An acceleration method for integral equations by using interpolation post-processing. Advances in Comput. Math. 9 (1998), 117–129.
DOI 10.1023/A:1018925103993 |
MR 1662762
[16] I. H. Sloan:
Superconvergence. Numerical Solution of Integral Equations, M. A. Golberg (ed.), Plenum Press, New York, 1990, pp. 35–70.
MR 1067150 |
Zbl 0759.65091