Previous |  Up |  Next

Article

Title: Global existence for a nuclear fluid in one dimension: the $T>0$ case (English)
Author: Ducomet, B.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 1
Year: 2002
Pages: 45-75
Summary lang: English
.
Category: math
.
Summary: We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure $P$ which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases $P>0$ and $P<0$. (English)
Keyword: Navier-Stokes equations
Keyword: compressible fluid
MSC: 74D10
MSC: 76D05
MSC: 76N15
idZBL: Zbl 1090.76517
idMR: MR1876491
DOI: 10.1023/A:1021754900964
.
Date available: 2009-09-22T18:08:40Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134484
.
Reference: [1] P. J. Siemens: Liquid-gas phase transition in nuclear matter.Nature 305 (1983), 410–412. 10.1038/305410a0
Reference: [2] P. Bonche, S. Koonin and J. W. Negele: One-dimensional nuclear dynamics in the TDHF  approximation.Phys. Rev.  C 13 (1976), 1226–1258. 10.1103/PhysRevC.13.1226
Reference: [3] D. K. Campbell: Nuclear Physics in one dimension.In: Nuclear Physics with Heavy Ions and Mesons, R. Balian et al. (eds.), North Holland, 1980.
Reference: [4] C. Y. Wong, J. A. Maruhn and T. A. Welton: Dynamics of nuclear fluids. I. Foundations.Nucl. Phys. A253 (1975), 469–489.
Reference: [5] B.  Ducomet: Simplified models of quantum fluids in nuclear physics.Math. Bohem. 126 (2001), 323–336. Zbl 1050.76063, MR 1844272
Reference: [6] B. Ducomet: Global existence for a simplified model of nuclear fluid in one dimension.J. Math. Fluid Mech. 2 (2000), 1–15. Zbl 0974.76013, MR 1755864, 10.1007/s000210050017
Reference: [7] B. Ducomet: Asymptotic behaviour for a nuclear fluid in one dimension.Math. Methods Appl. Sci. 24 (2001), 543–559. MR 1835486, 10.1002/mma.227
Reference: [8] P. Ring, P. Schuck: The Nuclear Many-Body Problem.Springer-Verlag, 1980. MR 0611683
Reference: [9] S. N. Antontsev, A. V. Kazhikhov and V. N.  Monakhov: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and Its Applications Vol.  22.North Holland, Amsterdam, 1990. MR 1035212
Reference: [10] B. Kawohl: Global existence of large solutions to initial boundary value problems for a viscous heat-conducting one-dimensional real gas.J. Differential Equations 58 (1985), 76–103. Zbl 0579.35052, MR 0791841, 10.1016/0022-0396(85)90023-3
Reference: [11] S. Jiang: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas.J. Differential Equations 110 (1994), 157–181. Zbl 0805.35074, MR 1278368, 10.1006/jdeq.1994.1064
Reference: [12] S. Jiang: On the asymptotic behaviour of the motion of a viscous heat-conducting, one-dimensional real gas.Math. Z. 216 (1994), 317–336. MR 1278427, 10.1007/BF02572324
Reference: [13] B. Ducomet: On the stability of a stellar structure in one dimension  II: The reactive case.RAIRO Modél. Math. Anal. Numér. 31 (1997), 381–407. Zbl 0882.76025, MR 1451348, 10.1051/m2an/1997310303811
Reference: [14] C. Dafermos, L. Hsiao: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity.Nonlinear Anal. Theory Methods Appl. 6 (1982), 435–454. MR 0661710, 10.1016/0362-546X(82)90058-X
Reference: [15] S. Jiang: Global large solutions to initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity.Quart. Appl. Math. 51 (1993), 731–744. Zbl 0809.35135, MR 1247437, 10.1090/qam/1247437
Reference: [16] L. Hsiao, T. Luo: Large time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity.Quart. Appl. Math. 61 (1998), 201–219. MR 1622554
Reference: [17] W. Shen, S. Zheng and P. Zhu: Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions.Quart. Appl. Math. 57 (1999), 93–116. MR 1672183, 10.1090/qam/1672183
Reference: [18] T. Nagasawa: On the outer pressure problem of the one-dimensional polytropic ideal gas.Japan J. Appl. Math. 5 (1988), 53–85. Zbl 0665.76076, MR 0924744
Reference: [19] G. Andrews, J. M. Ball: Asymptotic behaviour and changes of phase in one-dimensional non linear viscoelasticity.J. Differential Equations 44 (1982), 306–341. MR 0657784, 10.1016/0022-0396(82)90019-5
.

Files

Files Size Format View
AplMat_47-2002-1_4.pdf 433.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo