Title:
|
Global existence for a nuclear fluid in one dimension: the $T>0$ case (English) |
Author:
|
Ducomet, B. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
47 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
45-75 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure $P$ which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases $P>0$ and $P<0$. (English) |
Keyword:
|
Navier-Stokes equations |
Keyword:
|
compressible fluid |
MSC:
|
74D10 |
MSC:
|
76D05 |
MSC:
|
76N15 |
idZBL:
|
Zbl 1090.76517 |
idMR:
|
MR1876491 |
DOI:
|
10.1023/A:1021754900964 |
. |
Date available:
|
2009-09-22T18:08:40Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134484 |
. |
Reference:
|
[1] P. J. Siemens: Liquid-gas phase transition in nuclear matter.Nature 305 (1983), 410–412. 10.1038/305410a0 |
Reference:
|
[2] P. Bonche, S. Koonin and J. W. Negele: One-dimensional nuclear dynamics in the TDHF approximation.Phys. Rev. C 13 (1976), 1226–1258. 10.1103/PhysRevC.13.1226 |
Reference:
|
[3] D. K. Campbell: Nuclear Physics in one dimension.In: Nuclear Physics with Heavy Ions and Mesons, R. Balian et al. (eds.), North Holland, 1980. |
Reference:
|
[4] C. Y. Wong, J. A. Maruhn and T. A. Welton: Dynamics of nuclear fluids. I. Foundations.Nucl. Phys. A253 (1975), 469–489. |
Reference:
|
[5] B. Ducomet: Simplified models of quantum fluids in nuclear physics.Math. Bohem. 126 (2001), 323–336. Zbl 1050.76063, MR 1844272 |
Reference:
|
[6] B. Ducomet: Global existence for a simplified model of nuclear fluid in one dimension.J. Math. Fluid Mech. 2 (2000), 1–15. Zbl 0974.76013, MR 1755864, 10.1007/s000210050017 |
Reference:
|
[7] B. Ducomet: Asymptotic behaviour for a nuclear fluid in one dimension.Math. Methods Appl. Sci. 24 (2001), 543–559. MR 1835486, 10.1002/mma.227 |
Reference:
|
[8] P. Ring, P. Schuck: The Nuclear Many-Body Problem.Springer-Verlag, 1980. MR 0611683 |
Reference:
|
[9] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Studies in Mathematics and Its Applications Vol. 22.North Holland, Amsterdam, 1990. MR 1035212 |
Reference:
|
[10] B. Kawohl: Global existence of large solutions to initial boundary value problems for a viscous heat-conducting one-dimensional real gas.J. Differential Equations 58 (1985), 76–103. Zbl 0579.35052, MR 0791841, 10.1016/0022-0396(85)90023-3 |
Reference:
|
[11] S. Jiang: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas.J. Differential Equations 110 (1994), 157–181. Zbl 0805.35074, MR 1278368, 10.1006/jdeq.1994.1064 |
Reference:
|
[12] S. Jiang: On the asymptotic behaviour of the motion of a viscous heat-conducting, one-dimensional real gas.Math. Z. 216 (1994), 317–336. MR 1278427, 10.1007/BF02572324 |
Reference:
|
[13] B. Ducomet: On the stability of a stellar structure in one dimension II: The reactive case.RAIRO Modél. Math. Anal. Numér. 31 (1997), 381–407. Zbl 0882.76025, MR 1451348, 10.1051/m2an/1997310303811 |
Reference:
|
[14] C. Dafermos, L. Hsiao: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity.Nonlinear Anal. Theory Methods Appl. 6 (1982), 435–454. MR 0661710, 10.1016/0362-546X(82)90058-X |
Reference:
|
[15] S. Jiang: Global large solutions to initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity.Quart. Appl. Math. 51 (1993), 731–744. Zbl 0809.35135, MR 1247437, 10.1090/qam/1247437 |
Reference:
|
[16] L. Hsiao, T. Luo: Large time behaviour of solutions to the equations of one-dimensional nonlinear thermoviscoelasticity.Quart. Appl. Math. 61 (1998), 201–219. MR 1622554 |
Reference:
|
[17] W. Shen, S. Zheng and P. Zhu: Global existence and asymptotic behaviour of weak solutions to nonlinear thermoviscoelastic systems with clamped boundary conditions.Quart. Appl. Math. 57 (1999), 93–116. MR 1672183, 10.1090/qam/1672183 |
Reference:
|
[18] T. Nagasawa: On the outer pressure problem of the one-dimensional polytropic ideal gas.Japan J. Appl. Math. 5 (1988), 53–85. Zbl 0665.76076, MR 0924744 |
Reference:
|
[19] G. Andrews, J. M. Ball: Asymptotic behaviour and changes of phase in one-dimensional non linear viscoelasticity.J. Differential Equations 44 (1982), 306–341. MR 0657784, 10.1016/0022-0396(82)90019-5 |
. |