[1] D. Adam, A. Felgenhauer, H.-G. Roos and M. Stynes: 
A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54 (1995), 1–25. 
DOI 10.1007/BF02238077 | 
MR 1314953 
[2] Ph. Angot, V. Dolejší, M. Feistauer and J. Felcman: 
Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263–310. 
DOI 10.1023/A:1023217905340 | 
MR 1627989 
[3] P. Arminjon, A. Madrane: 
A mixed finite volume/finite element method for 2-dimensional compressible Navier-Stokes equations on unstructured grids. In: Hyperbolic Problems: Theory, Numerics, Applications, M. Fey, R. Jeltsch (eds.), Birkhäuser, Basel, 1999. 
MR 1715728 
[4] P. G.  Ciarlet: 
The Finite Elements Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland, Amsterdam, 1978. 
MR 0520174 
[5] M. Crouzeix, P.-A. Raviart: 
Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973), 33–75. 
MR 0343661 
[6] V. Dolejší: Sur des méthodes combinant des volumes finis et des éléments finis pour le calcul d’écoulements compressibles sur des maillages non structurés. PhD Dissertation, Charles University Prague—L’Université Méditerranée Marseille, 1998.
[7] V. Dolejší: 
Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178. 
DOI 10.1007/s007910050015 
[8] V. Dolejší, P. Angot: Finite volume methods on unstructured meshes for compressible flows. In: Finite Volumes for Complex Applications (Problems and Perspectives),, F. Benkhaldoun, R. Vilsmeier (eds.), Hermes, Rouen, 1996, pp. 667–674.
[9] R. Eymand, T. Gallouët and R. Herbin: Finite Volume Methods. Technical Report 97-19, Centre de Mathématiques et d’Informatique. Université de Provence, Marseille, 1997.
[10] V. Dolejší, M. Feistauer and J. Felcman: 
On the discrete Friedrichs inequality for nonconforming finite elements. Numer. Funct. Anal. Optim. 20 (1999), 437–447. 
DOI 10.1080/01630569908816904 | 
MR 1704954 
[11] M. Feistauer: 
Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 67. Longman Scientific & Technical, Harlow, 1993. 
MR 1266627 
[12] M. Feistauer, V. Dolejší, J. Felcman and A. Kliková: Adaptive mesh refinement for problems of fluid dynamics. In: Proc. of Colloquium Fluid Dynamics ’99, P. Jonáš, V.  Uruba (eds.), Institute of Thermomechanics, Academy of Sciences, Prague, 1999, pp. 53–60.
[13] M. Feistauer, J. Felcman: Convection-diffusion problems and compressible Navier-Stokes equations. In: The Mathematics of Finite Elements and Applications, J. R. Whiteman (ed.), John Wiley & Sons, 1997, pp. 175–194.
[14] M. Feistauer, J. Felcman and V. Dolejší: Numerical simulation of compresssible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.
[17] M. Feistauer, J. Felcman, M. Lukáčová and G. Warnecke: 
Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528–1548. 
DOI 10.1137/S0036142997314695 | 
MR 1706727 
[19] J. Felcman: 
Finite volume solution of the inviscid compressible fluid flow. Z. Angew. Math. Mech. 72 (1992), 513–516. 
Zbl 0825.76666 
[20] J. Felcman, V. Dolejší: Adaptive methods for the solution of the Euler equations in elements of the blade machines. Z. Angew. Math. Mech. 76 (1996), 301–304.
[21] J. Felcman, V. Dolejší and M. Feistauer: Adaptive finite volume method for the numerical solution of the compressible Euler equations. In: Computational Fluid Dynamics ’94, J. Périaux, S. Wagner, E. H. Hirschel and R. Piva (eds.), John Wiley & Sons, Stuttgart, 1994, pp. 894–901.
[22] J. Felcman, G. Warnecke: 
Adaptive computational methods for gas flow. In: Proceedings of the Prague Mathematical Conference, K. Segeth (ed.), ICARIS, Prague, 1996, pp. 99–104. 
MR 1703464 
[23] J. Fořt, M. Huněk, K. Kozel and M. Vavřincová: Numerical simulation of steady and unsteady flows through plane cascades. In: Numerical Modeling in Continuum Mechanics II, R. Ranacher, M. Feistauer and K. Kozel (eds.), Faculty of Mathematics and Physics, Charles Univ., Prague, 1995, pp. 95–102.
[24] H. Gajewski, K. Gröger and K. Zacharias: 
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. 
MR 0636412 
[25] T. Ikeda: 
Maximum principle in finite element models for convection-diffusion phenomena. In: Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1983. 
MR 0683102 | 
Zbl 0508.65049 
[26] C. Johnson: 
Finite element methods for convection-diffusion problems. In: Computing Methods in Engineering and Applied Sciences V., R. Glowinski, J. L. Lions (eds.), North-Holland, Amsterdam, 1981. 
MR 0784648 
[27] C. Johnson: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, 1988.
[28] A. Kliková: Finite Volume—Finite Element Solution of Compressible Flow. Doctoral Thesis. Charles University Prague, 2000.
[29] A. Kliková, M. Feistauer and J. Felcman: Adaptive methods for problems of fluid dynamics. In: Software and Algorithms of Numerical Mathematics ’99, J. Holenda, I. Marek (eds.), West-Bohemian University, Pilsen, 1999.
[30] D. Kröner: 
Numerical Schemes for Conservation Laws. Wiley & Teuner, Chichester, 1997. 
MR 1437144 
[31] D. Kröner, M. Rokyta: 
Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994), 324–343. 
DOI 10.1137/0731017 | 
MR 1276703 
[32] M. Křížek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1993), 59–69.
[33] M. Křížek, P.  Neittaanmäki: 
Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 50. Longman Scientific & Technical, Harlow, 1990. 
MR 1066462 
[34] A. Kufner, O. John and S. Fučík: 
Function Spaces. Academia, Prague, 1977. 
MR 0482102 
[35] J. M. Melenk and C. Schwab: 
The $hp$ streamline diffusion finite element method for convection dominated problems in one space dimension. East-West J. Numer. Math. 7 (1999), 31–60. 
MR 1683935 
[36] K. W. Morton: 
Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London, 1996. 
MR 1445295 | 
Zbl 0861.65070 
[37] K. Ohmori, T. Ushijima: 
A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO Anal. Numér. 18 (1984), 309–322. 
DOI 10.1051/m2an/1984180303091 | 
MR 0751761 
[39] H.-G. Roos, M. Stynes and L. Tobiska: 
Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, Vol. 24. Springer-Verlag, Berlin, 1996. 
MR 1477665 
[40] F. Schieweck, L. Tobiska: 
A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation. RAIRO Modél. Math. Anal. Numér. 23 (1989), 627–647. 
DOI 10.1051/m2an/1989230406271 | 
MR 1025076 
[41] C. Schwab: 
$p$- and $hp$- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998. 
MR 1695813 | 
Zbl 0910.73003 
[42] S. P. Spekreijse: 
Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987. 
MR 0942891 
[43] G. Strang: 
Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 689–710. 
MR 0413554 | 
Zbl 0264.65068 
[44] M. Šťastný, P. Šafařík: Experimental analysis data on the transonic flow past a plane turbine cascade. ASME Paper 90-GT-313, New York, 1990.
[46] L. Tobiska: 
Full and weighted upwind finite element methods. In: Splines in Numerical Analysis Mathematical Research Volume, Vol. 32, J. W. Schmidt, H. Spath (eds.), Akademie-Verlag, Berlin, 1989. 
MR 1004263 | 
Zbl 0685.65074 
[47] G. Vijayasundaram: 
Transonic flow simulation using an upstream centered scheme of Godunov in finite elements. J. Comp. Phys. 63 (1986), 416–433. 
MR 0835825 
[48] G. Zhou: 
A local ${L}^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems. RAIRO Modél. Math. Anal. Numér. 29 (1995), 577–603. 
DOI 10.1051/m2an/1995290505771 | 
MR 1352863