[1] A.  Amassad, M.  Shillor and M.  Sofonea: 
A quasistatic contact problem for an elastic perfectly plastic body with Tresca’s friction. Nonlinear Anal. 35 (1999), 95–109. 
DOI 10.1016/S0362-546X(98)00100-X | 
MR 1633958 
[2] A.  Amassad, M.  Sofonea: 
Analysis of a quasistatic viscoplastic problem involving Tresca friction law. Discrete Contin. Dynam. Systems 4 (1998), 55–72. 
MR 1485363 
[3] L.-E.  Anderson: 
A quasistatic frictional problem with normal compliance. Nonlinear Anal. TMA 16 (1991), 347–370. 
MR 1093846 
[4] L.-E. Anderson: 
A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 5 (1995), 249–286. 
MR 1325968 
[5] H.  Brézis: 
Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18 (1968), 115–175. 
DOI 10.5802/aif.280 | 
MR 0270222 
[6] H.  Brézis: Problèmes unilatéraux. J.  Math. Pures et Appl. 51 (1972), 1–168.
[7] J.  Chen, W.  Han and M.  Sofonea: 
Numerical analysis of a quasistatic problem of sliding frictional contact with wear. Methods Appl. Anal. 7 (2000), 687–704. 
MR 1868552 
[9] G.  Duvaut, J. L. Lions: 
Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, 1976. 
MR 0521262 
[11] W.  Han, B. D.  Reddy: 
Plasticity: Mathematical Theory and Numerical Analysis. Springer-Verlag, New York, 1999. 
MR 1681061 
[13] I. R.  Ionescu, M.  Sofonea: 
Functional and Numerical Methods in Viscoplasticity. Oxford University Press, Oxford, 1993. 
MR 1244578 
[14] N.  Kikuchi, J. T.  Oden: 
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia, 1988. 
MR 0961258 
[15] I.  Hlaváček, J.  Haslinger, J.  Nečas and J.  Lovíšek: 
Solution of Variational Inequalities in Mechanics. Springer-Verlag, New York, 1988. 
MR 0952855 
[17] J. Jarušek: 
Dynamic contact problems with given friction for viscoelastic bodies. Czechoslovak Math.  J. 46 (1996), 475–487. 
MR 1408299 
[18] J. Jarušek, C. Eck: 
Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Models Methods Appl. Sci. 9 (1999), 11–34. 
DOI 10.1142/S0218202599000038 | 
MR 1671535 
[19] A.  Klarbring, A.  Mikelič and M.  Shillor: 
A global existence result for the quasistatic frictional contact problem with normal compliance. In: Unilateral Problems in Structural Analysis Vol. 4, G.  Del Piero, F.  Maceri (eds.), Birkhäuser, Boston, 1991, pp. 85–111. 
MR 1169547 
[20] D.  Motreanu, M.  Sofonea: 
Evolutionary variational inequalities arising in quasistatic frictional contact problems for elastic materials. Abstract Appl. Anal. 4 (1999), 255–279. 
DOI 10.1155/S1085337599000172 | 
MR 1813003 
[21] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[22] P. D.  Panagiotopoulos: 
Inequality Problems in Mechanics and Applications. Birkhäuser, Basel, 1985. 
MR 0896909 | 
Zbl 0579.73014 
[23] M.  Raous, M.  Jean and J. J.  Moreau (eds.): Contact Mechanics. Plenum Press, New York, 1995.
[24] M.  Rochdi, M.  Shillor and M.  Sofonea: 
Quasistatic nonlinear viscoelastic contact with normal compliance and friction. J.  Elasticity 51 (1998), 105–126. 
DOI 10.1023/A:1007413119583 | 
MR 1664496 
[26] M.  Shillor (ed.): Recent Advances in Contact Mechanics. Math. Computer Model. 28 (1998), no. 4–8.
[28] M.  Sofonea, M.  Shillor: 
Variational analysis of quasistatic viscoplastic contact problems with friction. Comm. Appl. Anal. 5 (2001), 135–151. 
MR 1844677