Previous |  Up |  Next

Article

Keywords:
periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian
Summary:
In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.
References:
[1] F. E. Browder, Bui An Ton: Nonlinear functional equations in Banach spaces and elliptic super regularization. Math. Z. 105 (1968), 177–195. DOI 10.1007/BF01109897 | MR 0232256
[2] N. N. Castro: Existence and asymptotic behaviour of solutions of a nonlinear evolution problem. Appl. Math. 42 (1997), 411–420. DOI 10.1023/A:1022251012703 | MR 1475050 | Zbl 0940.35139
[3] J. Cronin: Fixed Point and Topological Degree in Nonlinear Analysis. Mathematical Surveys, No. 11. Amer. Math. Soc., Providence, 1964. MR 0164101
[4] T. Kakita: On the existence of time periodic solutions of some nonlinear evolution equations. Appl. Anal. 4 (1974), 63–76. DOI 10.1080/00036817408839083 | MR 0454278
[5] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969. MR 0259693 | Zbl 0189.40603
[6] L. A. Medeiros, M. M.  Miranda: Weak solutions of nonlinear Klein-Gordon equations. Ann. Math. Pura Appl. IV, ser. 146 (1987), 173–183. MR 0916692
[7] I. Segal: Nonlinear partial differential equations in quantum field theory. Proc. Sympos. Appl. Math. Amer. Math. Soc. 17 (1965), 210–226. DOI 10.1090/psapm/017/0202406 | MR 0202406 | Zbl 0152.23902
[8] M. Tsutsumi: Some nonlinear evolution equations of second order. Proc. Japan. Acad. Ser. A Math. Sci. 47 (1971), 950–955. MR 0312023 | Zbl 0258.35017
[9] K. Yosida: Equations Différentielles et Intégrales. Dunod, Paris, 1971. MR 0344557 | Zbl 0231.34002
[10] E. Zeidler: Nonlinear Functional Analysis and its Applications: I—Fixed-Point Theorems. Springer-Verlag, New York, 1986. MR 0816732 | Zbl 0583.47050
Partner of
EuDML logo