Previous |  Up |  Next

Article

Title: On a reliable solution of a Volterra integral equation in a Hilbert space (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 469-486
Summary lang: English
.
Category: math
.
Summary: We consider a class of Volterra-type integral equations in a Hilbert space. The operators of the equation considered appear as time-dependent functions with values in the space of linear continuous operators mapping the Hilbert space into its dual. We are looking for maximal values of cost functionals with respect to the admissible set of operators. The existence of a solution in the continuous and the discretized form is verified. The convergence analysis is performed. The results are applied to a quasistationary problem for an anisotropic viscoelastic body made of a long memory material. (English)
Keyword: Volterra integral equation in a Hilbert space
Keyword: Rothe’s method
Keyword: maximization problem
Keyword: viscoelastic body
MSC: 45D05
MSC: 45N05
MSC: 49J22
MSC: 65R20
MSC: 74D05
idZBL: Zbl 1099.45001
idMR: MR2025957
DOI: 10.1023/B:APOM.0000024487.48855.d9
.
Date available: 2009-09-22T18:15:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134544
.
Reference: [1] I.  Bock, J. Lovíšek: Optimal control of a viscoelastic plate bending.Math. Nachr. 125 (1986), 135–151. MR 0847355, 10.1002/mana.19861250109
Reference: [2] I.  Bock, J. Lovíšek: An optimal control problem for a pseudoparabolic variational inequality.Appl. Math. 37 (1992), 62–80. MR 1152158
Reference: [3] R. M.  Christensen: Theory of Viscoelasticity.Academic Press, New York, 1982.
Reference: [4] P. G.  Ciarlet: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Applications  4, North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] J. Chleboun: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: sensitivity analysis and numerical examples.Nonlinear Anal. 44 (2001), 375–388. Zbl 1002.35041, MR 1817101, 10.1016/S0362-546X(99)00274-6
Reference: [6] I. Hlaváček: Reliable solution of linear parabolic problems with respect to uncertain coefficients.Z.  Angew. Math. Mech. 79 (1999), 291–301. MR 1695286, 10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N
Reference: [7] I. Hlaváček: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math. 41 (1996), 447–466. MR 1415251
Reference: [8] I. Hlaváček: Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function.Math. Models Methods Appl. Sci. 11 (2001), 855–865. Zbl 1037.74028, MR 1842230, 10.1142/S0218202501001148
Reference: [9] I. Hlaváček: Reliable solution of a a perfect plastic problem with uncertain stress-strain law and yield function.SIAM J.  Numer. Anal. 39 (2001), 1531–1555. MR 1885706
Reference: [10] J. Kačur: Method of Rothe in Evolution Equations.Teubner, Leipzig, 1985. MR 0834176
Reference: [11] J. Kačur: Application of Rothe’s method to integro-differential equations.J. Reine Angew. Math. 388 (1988), 73–105. MR 0944184
Reference: [12] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha, 1967. MR 0227584
Reference: [13] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Studies in Applied Mathematics  3.Elsevier, 1981.
Reference: [14] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.Reidel, Dordrecht-Boston-London, 1982. Zbl 0522.65059, MR 0689712
Reference: [15] S. Shaw, J. R. Whiteman: Adaptive space-time finite element solution for Volterra equations arising in viscoelastic problems.J.  Comput. Appl. Math.  (4) 125 (2000), 1234–1257. MR 1803200
Reference: [16] J. Simon: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65–96. MR 0916688
.

Files

Files Size Format View
AplMat_48-2003-6_7.pdf 388.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo