Previous |  Up |  Next

Article

Title: Nonlinear models of suspension bridges: discussion of the results (English)
Author: Drábek, Pavel
Author: Holubová, Gabriela
Author: Matas, Aleš
Author: Nečesal, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 497-514
Summary lang: English
.
Category: math
.
Summary: In this paper we present several nonlinear models of suspension bridges; most of them have been introduced by Lazer and McKenna. We discuss some results which were obtained by the authors and other mathematicians for the boundary value problems and initial boundary value problems. Our intention is to point out the character of these results and to show which mathematical methods were used to prove them instead of giving precise proofs and statements. (English)
Keyword: beam equation
Keyword: system of beam wave equation
Keyword: initial boundary value problem
Keyword: bifurcation
Keyword: Fučík spectrum
MSC: 34B15
MSC: 35B10
MSC: 35B40
MSC: 74H45
MSC: 74H60
MSC: 74K10
idZBL: Zbl 1099.74030
idMR: MR2025959
DOI: 10.1023/B:APOM.0000024489.96314.7f
.
Date available: 2009-09-22T18:15:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134546
.
Reference: [1] N. U. Ahmed, H. Harbi: Mathematical analysis of dynamic models of suspension bridges.SIAM J. Appl. Math. 58 (1998), 853–874. MR 1616611, 10.1137/S0036139996308698
Reference: [2] J. M. Alonso, R. Ortega: Global asymptotic stability of a forced Newtonian system with dissipation.Journal of Math. Anal. and Appl. 196 (1995), 965–986. MR 1365234, 10.1006/jmaa.1995.1454
Reference: [3] J. Berkovits, P. Drábek, H. Leinfelder, V.  Mustonen and G. Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solution.Nonlin. Analysis: Real Word Appl. 1 (2000), 345–362. MR 1791531
Reference: [4] J. Berkovits, V.  Mustonen: Existence and multiplicity results for semilinear beam equations.Colloquia Mathematica Societatis János Bolyai Budapest, 1991, pp. 49–63. MR 1468743
Reference: [5] J. Čepička: Numerical experiments in nonlinear problems.PhD. Thesis, University of West Bohemia, Pilsen, 2002. (Czech)
Reference: [6] Y. Chen, P. J. McKenna: Travelling waves in a nonlinear suspended beam: theoretical results and numerical observations.Journal of Diff. Eq. 136 (1997), 325–355. MR 1448828, 10.1006/jdeq.1996.3155
Reference: [7] Q. H. Choi, K.  Choi, T.  Jung: The existence of solutions of a nonlinear suspension bridge equation.Bull. Korean Math. Soc. 33 (1996), 503–512. MR 1424092
Reference: [8] Q. H. Choi, T.  Jung, P. J.  McKenna: The study of a nonlinear suspension bridge equation by a variational reduction method.Applicable Analysis 50 (1993), 73–92. MR 1281204, 10.1080/00036819308840185
Reference: [9] Y. S. Choi, K. S.  Jen, P. J.  McKenna: The structure of the solution set for periodic oscillations in a suspension bridge model.IMA Journal of Applied Math. 47 (1991), 283–306. MR 1141492, 10.1093/imamat/47.3.283
Reference: [10] P. Drábek: Jumping nonlinearities and mathematical models of suspension bridges.Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18. MR 1309060
Reference: [11] P. Drábek, G. Holubová: Bifurcation of periodic solutions in symmetric models of suspension bridges.Topological Methods in Nonlin. Anal. 14 (1999), 39–58. 10.12775/TMNA.1999.021
Reference: [12] P. Drábek, H.  Leinfelder, G.  Tajčová: Coupled string-beam equations as a model of suspension bridges.Appl. Math. 44 (1999), 97–142. MR 1667633, 10.1023/A:1022257304738
Reference: [13] P. Drábek, P.  Nečesal: Nonlinear scalar model of suspension bridge: existence of multiple periodic solutions.Nonlinearity 16 (2003), 1165–1183. MR 1975801, 10.1088/0951-7715/16/3/320
Reference: [14] J. Dupré: Bridges.Black Dog & Levenathal Publishers, New York, 1997.
Reference: [15] A. Fonda, Z.  Schneider, F.  Zanolin: Periodic oscillations for a nonlinear suspension bridge model.J.  Comput. Appl. Math. 52 (1994), 113–140. MR 1310126, 10.1016/0377-0427(94)90352-2
Reference: [16] J. Glover, A. C.  Lazer, P. J. McKenna: Existence and stability of large scale nonlinear oscillations in suspension bridges.J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200. MR 0990626, 10.1007/BF00944997
Reference: [17] G. Holubová, A. Matas: Initial-boundary value problem for nonlinear string-beam system.J. Math. Anal. Appl, Accepted. MR 2020197
Reference: [18] L. D. Humphreys: Numerical mountain pass solutions of a suspension bridge equation.Nonlinear Analysis 28 (1997), 1811–1826. Zbl 0877.35126, MR 1432634, 10.1016/S0362-546X(96)00020-X
Reference: [19] L. D. Humphreys, P. J.  McKenna: Multiple periodic solutions for a nonlinear suspension bridge equation.IMA Journal of Applied Math (to appear). MR 1739628
Reference: [20] D. Jacover, P. J. McKenna: Nonlinear torsional flexings in a periodically forced suspended beam.Journal of Computational and Applied Math. 52 (1994), 241–265. MR 1310133, 10.1016/0377-0427(94)90359-X
Reference: [21] A. C. Lazer, P. J. McKenna: Fredholm theory for periodic solutions of some semilinear P.D.Es with homogeneous nonlinearities.Contemporary Math. 107 (1990), 109–122. MR 1066474, 10.1090/conm/107/1066474
Reference: [22] A. C. Lazer, P. J.  McKenna: A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities.Proc. Amer. Math. Society 106 (1989), 119–125. MR 0942635, 10.1090/S0002-9939-1989-0942635-9
Reference: [23] A. C. Lazer, P. J. McKenna: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities.Trans. Amer. Math. Society 315 (1989), 721–739. MR 0979963, 10.1090/S0002-9947-1989-0979963-1
Reference: [24] A. C. Lazer, P. J.  McKenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Review 32 (1990), 537–578. MR 1084570, 10.1137/1032120
Reference: [25] A. C. Lazer, P. J.  McKenna: Large scale oscillatory behaviour in loaded asymmetric systems.Ann. Inst. Henri Poincaré, Analyse non lineaire 4 (1987), 244–274. MR 0898049
Reference: [26] A. C. Lazer, P. J. McKenna: A symmetry theorem and applications to nonlinear partial differential equations.Journal of Diff. Equations 72 (1988), 95–106. MR 0929199, 10.1016/0022-0396(88)90150-7
Reference: [27] G. Liţcanu: A mathematical model of suspension bridges.Appl. Math (to appear). MR 2032147
Reference: [28] J. Malík: Oscillations in cable-stayed bridges: existence, uniqueness, homogenization of cable systems.J.  Math. Anal. Appl. 226 (2002), 100–126. MR 1876772
Reference: [29] J. Malík: Mathematical modelling of cable-stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems.Appl. Math (to appear). MR 2032146
Reference: [30] J. Malík: Nonlinear oscillations in cable-stayed bridges.(to appear).
Reference: [31] A. Matas, J. Očenášek: Modelling of suspension bridges.Proceedings of Computational Mechanics  2, 2002, pp. 275–278.
Reference: [32] P. J. McKenna, K. S.  Moore: Mathematical arising from suspension bridge dynamics: Recent developements.Jahresber. Deutsch. Math.-Verein 101 (1999), 178–195. MR 1726743
Reference: [33] P. J. McKenna, W.  Walter: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167–177. MR 0866720, 10.1007/BF00251232
Reference: [34] G. Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612
.

Files

Files Size Format View
AplMat_48-2003-6_9.pdf 445.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo