Previous |  Up |  Next

Article

Title: Numerical solution of several models of internal transonic flow (English)
Author: Fořt, Jaroslav
Author: Kozel, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 515-524
Summary lang: English
.
Category: math
.
Summary: The paper deals with numerical solution of internal flow problems. It mentions a long tradition of mathematical modeling of internal flow, especially transonic flow at our department. Several models of flow based on potential equation, Euler equations, Navier-Stokes and Reynolds averaged Navier-Stokes equations with proper closure are considered. Some mathematical and numerical properties of the model are mentioned and numerical results achieved by in-house developed methods are presented. (English)
Keyword: transonic flow
Keyword: mathematical models
Keyword: numerical solution
MSC: 35J25
MSC: 35Q30
MSC: 65M99
MSC: 76H05
idZBL: Zbl 1099.76028
idMR: MR2025961
DOI: 10.1023/B:APOM.0000024490.62523.95
.
Date available: 2009-09-22T18:15:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134547
.
Reference: [1] K. Kozel, J. Polášek, and M. Vavřincová: Numerical solution of transonic flow through a cascade with slender profiles.Proceedings of 6$^{\mathrm th}$ International conference on numerical methods in fluid dynamics, SAN Moscow, 1979, and Lecture notes.
Reference: [2] K. Kozel, M. Janda, and R.  Liska: Composite schemes on triangular meshes.Proceedings of the Conference on Hyperbolic Problems: Theory, Numerics, Applications, Magdeburg 2000, H. Freistühler, G. Warnecke (eds.), Birkhäuser, Basel, 2002, pp. 563–572. MR 1882958
Reference: [3] J. Fürst, K. Kozel: Numerical solution of inviscid and viscous flow using modern schemes and quadrilateral or triangular mesh.Math. Bohem. 126 (2001), 379–393. MR 1844276
Reference: [4] J.  Fořt, J. Fürst, J. Halama, K. Kozel: Numerical simulation of 3D transonic flow.Proceedings of IMACS congress, Lausanne, August 2000, , , .
Reference: [5] K.  Kozel, J. Fürst, J. Horák, and D. Vaněk: Central and upwind schemes applied in internal aerodynamics of transonic flows.Proceedings of the conference Topical Problems of Fluid Mechanics ’99, K. Kozel, J. Příhoda (eds.), IT AS CR, Prague, 1999, pp. 19–22.
Reference: [6] J.  Fořt: Mathematical models of inviscid compressible flow in profile cascade and its numerical solution.Habilitation Thesis, Fac. of Mechanical Eng., TU Prague, 1994. (Czech)
Reference: [7] P. G.  Ciarlet, M. H. Schultz, R. S. Varga: Numerical methods of high-order accuracy for nonlinear boundary value problems.Numer. Math. 13 (1969), 51–77. MR 0250496, 10.1007/BF02165273
Reference: [8] M.  Feistauer, J. Mandel, J. Nečas: Entropy regularization of the transonic potential flow problem.Comment. Math. Univ. Carol. 25 (1984), 431–443. MR 0775562
Reference: [9] M. Feistauer, J. Nečas: On the solvability of transonic potential flow problem.Z.  Anal. Anwendungen (1984), . MR 0807140
.

Files

Files Size Format View
AplMat_48-2003-6_10.pdf 469.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo