Previous |  Up |  Next

Article

Title: A note on the generalized energy inequality in the Navier-Stokes equations (English)
Author: Kučera, Petr
Author: Skalák, Zdeněk
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 537-545
Summary lang: English
.
Category: math
.
Summary: We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time. (English)
Keyword: Navier-Stokes equations
Keyword: suitable weak solution
Keyword: generalized energy inequality
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1099.35099
idMR: MR2025962
DOI: 10.1023/B:APOM.0000024492.23444.29
.
Date available: 2009-09-22T18:15:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134549
.
Reference: [1] L.  Caffarelli, R.  Kohn and L.  Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math. 35 (1982), 771–831. MR 0673830, 10.1002/cpa.3160350604
Reference: [2] Y.  Giga, H.  Sohr: Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains.J. Funct. Anal. 102 (1991), 72–94. MR 1138838, 10.1016/0022-1236(91)90136-S
Reference: [3] P.  Kučera, Z.  Skalák: Generalized energy inequality for suitable weak solutions of the Navier-Stokes equations.In: Proceedings of seminar Topical Problem of Fluid Mechanics 2003, Institute of Thermomechanics AS CR, J.  Příhoda, K.  Kozel (eds.), Prague, 2003, pp. 61–66.
Reference: [4] A.  Kufner, O.  John, S.  Fučík: Function Spaces.Academia, Prague, 1979.
Reference: [5] J.  Neustupa, A.  Novotný, P.  Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations.Preprint, University of Toulon-Var, 1999.
Reference: [6] G. A.  Seregin: Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary.J.  Math. Fluid Mech. 4 (2002), 1–29. Zbl 0997.35044, MR 1891072, 10.1007/s00021-002-8533-z
Reference: [7] Z.  Skalák, P.  Kučera: Remark on regularity of weak solutions to the Navier-Stokes equations.Comment. Math. Univ. Carolin. 42 (2001), 111–117. MR 1825376
Reference: [8] R.  Temam: Navier-Stokes Equations, Theory and Numerical Analysis.North-Holland Publishing Company, Amsterdam-New York-Oxford. Revised edition, 1979. Zbl 0426.35003, MR 0603444
.

Files

Files Size Format View
AplMat_48-2003-6_12.pdf 318.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo