Previous |  Up |  Next

Article

Title: The boundary regularity of a weak solution of the Navier-Stokes equation and its connection to the interior regularity of pressure (English)
Author: Neustupa, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 6
Year: 2003
Pages: 547-558
Summary lang: English
.
Category: math
.
Summary: We assume that ${\mathbb{v}}$ is a weak solution to the non-steady Navier-Stokes initial-boundary value problem that satisfies the strong energy inequality in its domain and the Prodi-Serrin integrability condition in the neighborhood of the boundary. We show the consequences for the regularity of ${\mathbb{v}}$ near the boundary and the connection with the interior regularity of an associated pressure and the time derivative of ${\mathbb{v}}$. (English)
Keyword: Navier-Stokes equations
Keyword: regularity
MSC: 35B65
MSC: 35D10
MSC: 35Q30
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1099.35087
idMR: MR2025963
DOI: 10.1023/B:APOM.0000024493.04008.06
.
Date available: 2009-09-22T18:15:57Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134550
.
Reference: [1] H. Fujita, H. Morimoto: On fractional powers of the Stokes operator.Proc. Japan Acad. Ser. A Math. Sci. 16 (1970), 1141–1143. MR 0296755
Reference: [2] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I: Linearized Steady Problems.Springer-Verlag, New York-Berlin-Heidelberg, 1994. MR 1284205
Reference: [3] G. P. Galdi: An Introduction to the Navier-Stokes initial-boundary value problem.Fundamental Directions in Mathematical Fluid Mechanics, series “Advances in Mathematical Fluid Mechanics”, G. P. Galdi, J. Heywood and R. Rannacher (eds.), Birkhäuser-Verlag, Basel, 2000, pp. 1–98. Zbl 1108.35133, MR 1798753
Reference: [4] Y. Giga: Domains of fractional powers of the Stokes operator in $L^r$ spaces.Arch. Rat. Mech. Anal. 89 (1985), 254–281. MR 0786549
Reference: [5] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations.Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986. MR 0851383
Reference: [6] P. Kučera, Z. Skalák: Smoothness of the derivative of velocity in the vicinity of regular points of the Navier-Stokes equations.Proc. of the 4th seminar “Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)”, K. Kozel, J. Příhoda and M. Feistauer (eds.), Institute of Thermomechanics of the Academy of Sciences of the Czech Republic, Prague, 2001, pp. 83–86.
Reference: [7] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, London, 1969. Zbl 0184.52603, MR 0254401
Reference: [8] J. L. Lions, E. Magenes: Non-Homogeneous Boundary Value Problems and Applications.Springer-Verlag, Berlin-Heidelberg-New York, 1972.
Reference: [9] P. L. Lions: Mathematical Topics in Fluid Mechanics, Vol. 1.Clarendon Press, Oxford, 1996. Zbl 0866.76002, MR 1422251
Reference: [10] J. Neustupa, P. Penel: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D  Navier-Stokes equations.Mathematical Fluid Mechanics, Recent Results and Open Problems, series “Advances in Mathematical Fluid Mechanics”, J. Neustupa, P. Penel (eds.), Birkhäuser-Verlag, Basel, 2001, pp. 237–268. MR 1865056
Reference: [11] J. Serrin: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Rat. Mech. Anal. 9 (1962), 187–195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344
Reference: [12] Z. Skalák, P. Kučera: Regularity of pressure in the Navier-Stokes equations.Proc. of the Int. Conf. “Mathematical and Computer Modelling in Science and Engineering” dedicated to K. Rektorys, Czech Technical University, Prague, 2003, pp. 27–30. MR 2025965
Reference: [13] H. Sohr, W. von Wahl: On the regularity of pressure of weak solutions of Navier-Stokes equations.Arch. Math. 46 (1986), 428–439. MR 0847086, 10.1007/BF01210782
Reference: [14] S. Takahashi: On a regularity criterion up to the boundary for weak solutions of the Navier-Stokes equations.Commun. Partial Differ. Equations 17 (1992), 261–283. Zbl 0752.35050, MR 1151263, 10.1080/03605309208820841
.

Files

Files Size Format View
AplMat_48-2003-6_13.pdf 366.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo