Previous |  Up |  Next

Article

Title: Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems (English)
Author: Malík, Josef
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 1
Year: 2004
Pages: 1-38
Summary lang: English
.
Category: math
.
Summary: A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected with the homogenizing procedure is proposed and the existence and uniqueness of a solution are proved. (English)
Keyword: cable stayed bridges
Keyword: existence
Keyword: uniqueness
Keyword: continuous dependence on data
Keyword: homogenization of cable systems
MSC: 35B05
MSC: 35B27
MSC: 35B35
MSC: 35Q72
MSC: 58D25
MSC: 74H20
MSC: 74H25
MSC: 74K99
MSC: 74Q10
idZBL: Zbl 1099.35151
idMR: MR2032146
DOI: 10.1023/B:APOM.0000024518.38660.a3
.
Date available: 2009-09-22T18:16:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134556
.
Reference: [1] N. U. Ahmed, H.  Harbi: Mathematical analysis of dynamic models of suspension bridges.SIAM J.  Appl. Math. 58 (1998), 853–874. MR 1616611, 10.1137/S0036139996308698
Reference: [2] J.  Berkovits, P.  Drábek, H.  Leinfelder, V.  Mustonen, and G.  Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solution.Nonlinear Anal., Real World Appl. 1 (2000), 345–362. MR 1791531
Reference: [3] P.  Drábek, H.  Leinfelder, and G.  Tajčová: Coupled string-beam equations as a model of suspension bridges.Appl. Math. 44 (1999), 97–142. MR 1667633, 10.1023/A:1022257304738
Reference: [4] A.  Fonda, Y.  Schneider, and F.  Zanolin: Periodic oscillations for a nonlinear suspension bridge model.J.  Comput. Appl. Math. 52 (1994), 113–140. MR 1310126, 10.1016/0377-0427(94)90352-2
Reference: [5] H . Gajewski, K.  Gröger, and K.  Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412
Reference: [6] J.  Glover, A. C.  Lazer, and P. J.  Mc Kenna: Existence and stability of large scale nonlinear oscillations in suspension bridges.Z. Angew. Math. Phys. 40 (1989), 171–200. MR 0990626, 10.1007/BF00944997
Reference: [7] A.  Kufner, O.  John, and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [8] A. C.  Lazer, P. J.  Mc Kenna: Large scale oscillatory behaviour in loaded asymmetric systems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4 (1987), 244–274. MR 0898049, 10.1016/S0294-1449(16)30368-7
Reference: [9] A. C.  Lazer, P. J.  Mc Kenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Review 32 (1989), 537–578. MR 1084570, 10.1137/1032120
Reference: [10] A. C.  Lazer, W.  Walter: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167–177. MR 0866720, 10.1007/BF00251232
Reference: [11] J. L.  Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. (French) Zbl 0189.40603, MR 0259693
Reference: [12] J.  Malík: Variational formulations of some models of suspension and cable stayed bridges.European J. Mech.—Solids/A, Submitted.
Reference: [13] S. L.  Sobolev: Applications of Functional Analysis in Mathematical Physics.American Mathematical Society, Providence, 1963. Zbl 0123.09003, MR 0165337
Reference: [14] G.  Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612
Reference: [15] R.  Walther, B.  Houriet, W. Isler, P.  Moïa, and J. F. Klein: Cable Stayed Bridges.Thomas Telford, , 1999.
Reference: [16] K.  Yosida: Functional analysis.Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. Zbl 0126.11504
.

Files

Files Size Format View
AplMat_49-2004-1_1.pdf 3.547Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo