Title:
|
Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems (English) |
Author:
|
Malík, Josef |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
49 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
1-38 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected with the homogenizing procedure is proposed and the existence and uniqueness of a solution are proved. (English) |
Keyword:
|
cable stayed bridges |
Keyword:
|
existence |
Keyword:
|
uniqueness |
Keyword:
|
continuous dependence on data |
Keyword:
|
homogenization of cable systems |
MSC:
|
35B05 |
MSC:
|
35B27 |
MSC:
|
35B35 |
MSC:
|
35Q72 |
MSC:
|
58D25 |
MSC:
|
74H20 |
MSC:
|
74H25 |
MSC:
|
74K99 |
MSC:
|
74Q10 |
idZBL:
|
Zbl 1099.35151 |
idMR:
|
MR2032146 |
DOI:
|
10.1023/B:APOM.0000024518.38660.a3 |
. |
Date available:
|
2009-09-22T18:16:32Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134556 |
. |
Reference:
|
[1] N. U. Ahmed, H. Harbi: Mathematical analysis of dynamic models of suspension bridges.SIAM J. Appl. Math. 58 (1998), 853–874. MR 1616611, 10.1137/S0036139996308698 |
Reference:
|
[2] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, and G. Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solution.Nonlinear Anal., Real World Appl. 1 (2000), 345–362. MR 1791531 |
Reference:
|
[3] P. Drábek, H. Leinfelder, and G. Tajčová: Coupled string-beam equations as a model of suspension bridges.Appl. Math. 44 (1999), 97–142. MR 1667633, 10.1023/A:1022257304738 |
Reference:
|
[4] A. Fonda, Y. Schneider, and F. Zanolin: Periodic oscillations for a nonlinear suspension bridge model.J. Comput. Appl. Math. 52 (1994), 113–140. MR 1310126, 10.1016/0377-0427(94)90352-2 |
Reference:
|
[5] H . Gajewski, K. Gröger, and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412 |
Reference:
|
[6] J. Glover, A. C. Lazer, and P. J. Mc Kenna: Existence and stability of large scale nonlinear oscillations in suspension bridges.Z. Angew. Math. Phys. 40 (1989), 171–200. MR 0990626, 10.1007/BF00944997 |
Reference:
|
[7] A. Kufner, O. John, and S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102 |
Reference:
|
[8] A. C. Lazer, P. J. Mc Kenna: Large scale oscillatory behaviour in loaded asymmetric systems.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 4 (1987), 244–274. MR 0898049, 10.1016/S0294-1449(16)30368-7 |
Reference:
|
[9] A. C. Lazer, P. J. Mc Kenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Review 32 (1989), 537–578. MR 1084570, 10.1137/1032120 |
Reference:
|
[10] A. C. Lazer, W. Walter: Nonlinear oscillations in a suspension bridge.Arch. Rational Mech. Anal. 98 (1987), 167–177. MR 0866720, 10.1007/BF00251232 |
Reference:
|
[11] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, Paris, 1969. (French) Zbl 0189.40603, MR 0259693 |
Reference:
|
[12] J. Malík: Variational formulations of some models of suspension and cable stayed bridges.European J. Mech.—Solids/A, Submitted. |
Reference:
|
[13] S. L. Sobolev: Applications of Functional Analysis in Mathematical Physics.American Mathematical Society, Providence, 1963. Zbl 0123.09003, MR 0165337 |
Reference:
|
[14] G. Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612 |
Reference:
|
[15] R. Walther, B. Houriet, W. Isler, P. Moïa, and J. F. Klein: Cable Stayed Bridges.Thomas Telford, , 1999. |
Reference:
|
[16] K. Yosida: Functional analysis.Springer-Verlag, Berlin-Götingen-Heidelberg, 1965. Zbl 0126.11504 |
. |