Previous |  Up |  Next

Article

Title: A mathematical model of suspension bridges (English)
Author: Liţcanu, Gabriela
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 1
Year: 2004
Pages: 39-55
Summary lang: English
.
Category: math
.
Summary: We prove the existence of weak T-periodic solutions for a nonlinear mathematical model associated with suspension bridges. Under further assumptions a regularity result is also given. (English)
Keyword: suspension bridges
Keyword: periodic solution
Keyword: Galerkin approximation
Keyword: Leray-Schauder principle
MSC: 35A35
MSC: 35B10
MSC: 35Q72
MSC: 70K30
MSC: 74H45
MSC: 74K10
idZBL: Zbl 1099.74037
idMR: MR2032147
DOI: 10.1023/B:APOM.0000024519.46627.4f
.
Date available: 2009-09-22T18:16:38Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134557
.
Reference: [1] J. M.  Ball: Initial-boundary value problems for an extensible beam.J.  Math. Anal. Appl. 42 (1973), 61–90. Zbl 0254.73042, MR 0319440, 10.1016/0022-247X(73)90121-2
Reference: [2] Q. H.  Choi, T.  Jung: On periodic solutions of the nonlinear suspension bridge equation.Differ. Integral Equ. 4 (1991), 383–396. MR 1081189
Reference: [3] P. Drábek: Jumping nonlinearities and mathematical models of suspension bridges.Acta Math. et Inf. Univ. Ostraviensis 2 (1994), 9–18. MR 1309060
Reference: [4] P.  Drábek, H. Leinfelder, and G. Tajčová: Coupled string-beam equations as a model of suspension bridges.Appl. Math. 44 (1999), 97–142. MR 1667633, 10.1023/A:1022257304738
Reference: [5] N.  Krylová: Periodic solutions of hyperbolic partial differential equation with quadratic dissipative term.Czechoslovak Math. J. 20(95) (1970), 375–405. MR 0283358
Reference: [6] A. C.  Lazer, P. J.  McKenna: Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis.SIAM Rev. 32 (1990), 537–578. MR 1084570, 10.1137/1032120
Reference: [7] P. J. McKenna, W.  Walter: Nonlinear oscillations in a suspension bridge.Arch. Ration. Mech. Anal. 98 (1987), 167–177. MR 0866720, 10.1007/BF00251232
Reference: [8] P. J.  McKenna, W. Walter: Travelling waves in a suspension bridge.SIAM J. Appl. Math. 50 (1990), 703–715. MR 1050908, 10.1137/0150041
Reference: [9] L. Sanchez: Periodic solutions of a nonlinear evolution equation with a linear dissipative term.Rend. Sem. Mat. Univ. Politec. Torino 37 (1980), 183–191. Zbl 0459.35009, MR 0608937
Reference: [10] G.  Tajčová: Mathematical models of suspension bridges.Appl. Math. 42 (1997), 451–480. MR 1475052, 10.1023/A:1022255113612
Reference: [11] E. Zeidler: Nonlinear Functional Analysis and Its Applications, Vol. I–III.Springer-Verlag, New York, 1985–1990.
.

Files

Files Size Format View
AplMat_49-2004-1_2.pdf 2.013Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo