Title:
|
Nonsmooth equations approach to a constrained minimax problem (English) |
Author:
|
Gao, Yan |
Author:
|
Li, Xuewen |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
50 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
115-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An equivalent model of nonsmooth equations for a constrained minimax problem is derived by using a KKT optimality condition. The Newton method is applied to solving this system of nonsmooth equations. To perform the Newton method, the computation of an element of the $b$-differential for the corresponding function is developed. (English) |
Keyword:
|
nonsmooth optimization |
Keyword:
|
nonsmooth equations |
Keyword:
|
minimax problems |
Keyword:
|
Newton methods |
Keyword:
|
KKT systems |
Keyword:
|
quasidifferential calculus |
MSC:
|
49J52 |
MSC:
|
65H10 |
MSC:
|
90C47 |
idZBL:
|
Zbl 1099.90075 |
idMR:
|
MR2125154 |
DOI:
|
10.1007/s10492-005-0008-0 |
. |
Date available:
|
2009-09-22T18:21:13Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134596 |
. |
Reference:
|
[1] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski: Nonsmooth Analysis and Control Theory.Springer-Verlag, New York, 1998. MR 1488695 |
Reference:
|
[2] V. F. Demyanov: On a relation between the Clarke subdifferential and the quasi-differential.Vestn. Leningr. Univ., Math. 13 (1981), 183–189. Zbl 0473.49008 |
Reference:
|
[3] V. F. Demyanov, A. M. Rubinov: Constructive Nonsmooth Analysis.Peter Lang, Frankfurt am Main, 1995. MR 1325923 |
Reference:
|
[4] F. Facchinei, A. Fischer, C. Kanzow, and J. Peng: A simple constrained optimization reformulation of KKT systems arising from variational inequalities.Appl. Math. Optimization 40 (1999), 19–37. MR 1685651, 10.1007/s002459900114 |
Reference:
|
[5] Y. Gao: Demyanov difference of two sets and optimality conditions of Lagrange multipliers type for constrained the quasidifferential optimization.J. Optimization Theory Appl. 104 (2000), 377–394. MR 1752323, 10.1023/A:1004613814084 |
Reference:
|
[6] Y. Gao: Newton methods for solving nonsmooth equations via a new subdifferential.Math. Methods Oper. Res. 54 (2001), 239–257. Zbl 1031.90069, MR 1873344, 10.1007/s001860100150 |
Reference:
|
[7] J. B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization.Springer-Verlag, Berlin, 1993. |
Reference:
|
[8] D. Li, N. Yamashita, and M. Fukushima: Nonsmooth equations based BFGS method for solving KKT system in mathematical programming.J. Optimization Theory Appl. 109 (2001), 123–167. MR 1833427, 10.1023/A:1017565922109 |
Reference:
|
[9] J. V. Outrata: Minimization of nonsmooth nonregular functions: Applications to discrete-time optimal control problems.Probl. Control Inf. Theory 13 (1984), 413–424. MR 0782437 |
Reference:
|
[10] J. S. Pang, D. Ralph: Piecewise smoothness, local invertibility, and parametric analysis of normal maps.Math. Oper. Res. 21 (1996), 401–426. MR 1397221, 10.1287/moor.21.2.401 |
Reference:
|
[11] F. A. Potra, L. Qi, and D. Sun: Secant methods for semismooth equations.Numer. Math. 80 (1998), 305–324. MR 1645041, 10.1007/s002110050369 |
Reference:
|
[12] L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227–244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227 |
Reference:
|
[13] L. Qi, H. Jiang: Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations.Math. Oper. Res. 22 (1997), 301–325. MR 1450794, 10.1287/moor.22.2.301 |
Reference:
|
[14] L. Qi, J. Sun: A nonsmooth version of Newton’s method.Mathematical Program., Ser. A 58 (1993), 353–367. MR 1216791, 10.1007/BF01581275 |
Reference:
|
[15] D. Sun, J. Han: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems.SIAM J. Optim. 7 (1997), 463–480. MR 1443629, 10.1137/S1052623494274970 |
Reference:
|
[16] Y. H. Yu, L. Gao: Nonmonotone line search algorithm for constrained minimax problems.J. Optimization Theory Appl. 115 (2002), 419–446. MR 1950702, 10.1023/A:1020896407415 |
. |