Previous |  Up |  Next

Article

Title: An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems (English)
Author: Cai, Xiao-Chuan
Author: Marcinkowski, Leszek
Author: Vassilevski, Panayot S.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 3
Year: 2005
Pages: 247-275
Summary lang: English
.
Category: math
.
Summary: This paper extends previous results on nonlinear Schwarz preconditioning (Cai and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The nonlocal finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in Jones and Vassilevski 2001. Then, the algebraic construction from Jones, Vassilevski and Woodward 2003 of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. A numerical illustration is also provided. (English)
Keyword: algebraic multigrid
Keyword: agglomeration
Keyword: non-linear elliptic problem
Keyword: nonlinear preconditioning
Keyword: Newton method
Keyword: finite elements
MSC: 65F10
MSC: 65F35
MSC: 65N30
MSC: 65N55
idZBL: Zbl 1099.65031
idMR: MR2133729
DOI: 10.1007/s10492-005-0016-0
.
Date available: 2009-09-22T18:22:13Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134605
.
Reference: [1] R. E.  Bank, M.  Holst: A new paradigm for parallel adaptive meshing algorithms.SIAM J.  Sci. Comput. 22 (2000), 1411–1443. MR 1797889, 10.1137/S1064827599353701
Reference: [2] R. E.  Bank, P. K.  Jimack, S. A.  Nadeem, and S. V.  Nepomnyaschikh: A weakly overlapping domain decomposition preconditioner for the finite element solution of elliptic partial differential equations.SIAM J.  Sci. Comput. 23 (2002), 1817–1841. MR 1923714, 10.1137/S1064827501361425
Reference: [3] P. N.  Brown, P. S.  Vassilevski, and C. S.  Woodward: On mesh-independent convergence of an inexact Newton-multigrid algorithm.SIAM J.  Sci. Comput. 25 (2003), 570–590. MR 2058076, 10.1137/S1064827502407822
Reference: [4] X.-C.  Cai, D. E.  Keyes: Nonlinearly preconditioned inexact Newton algorithms.SIAM J.  Sci. Comput. 24 (2002), 183–200. MR 1924420, 10.1137/S106482750037620X
Reference: [5] X.-C.  Cai, D. E.  Keyes, and L.  Marcinkowski: Nonlinear additive Schwarz preconditioners and applications in computational fluid dynamics.Int. J.  Numer. Methods Fluids 40 (2002), 1463–1470. MR 1957600, 10.1002/fld.404
Reference: [6] J. E.  Dennis Jr., R. B.  Schnabel: Numerical methods for unconstrained optimization and nonlinear equations.Classics in Applied Mathematics, Vol.  16, SIAM, Philadelphia, 1996. MR 1376139
Reference: [7] E. G.  D’yakonov: Optimization in Solving Elliptic Problems.CRC Press, Boca Raton, 1996. MR 1396083
Reference: [8] J. E.  Jones, P. S.  Vassilevski: AMGe based on element agglomeration.SIAM J.  Sci. Comput. 23 (2001), 109–133. MR 1860907, 10.1137/S1064827599361047
Reference: [9] J. E.  Jones, P. S.  Vassilevski, and C. S.  Woodward: Nonlinear Schwarz-FAS methods for unstructured finite element problems.In: Proceedings of the Second M.I.T.  Conference on Computational Fluid and Solid Mechanics, Cambridge, MA, June 17–20, 2003, Elsevier, 2003, pp. 2008–2011. MR 2029558
Reference: [10] G. Karypis, V.  Kumar: METIS: A family of multilevel partitioning algorithm.http://www-users.cs.umn.edu/karypis/metis/.
Reference: [11] B. Smith, P. Bjørstad, and W. Gropp: Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations.Cambridge University Press, Cambridge, 1996. MR 1410757
Reference: [12] V. Thomée: Galerkin finite element methods for parabolic problems.Lecture Notes in Mathematics, Vol. 1054, Springer-Verlag, Berlin, 1984. MR 0744045
Reference: [13] P. S.  Vassilevski: Sparse matrix element topology with application to AMG and preconditioning.Numer. Lin. Alg. Appl. 9 (2002), 429–444. MR 1934869, 10.1002/nla.300
Reference: [14] A. Ženíšek: Nonlinear elliptic and evolution problems and their finite element approximations.Computational Mathematics and Applications, Academic Press Inc., London, 1990. MR 1086876
.

Files

Files Size Format View
AplMat_50-2005-3_6.pdf 667.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo