Title:
|
Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators (English) |
Author:
|
Karátson, János |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
277-290 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A mesh independent bound is given for the superlinear convergence of the CGM for preconditioned self-adjoint linear elliptic problems using suitable equivalent operators. The results rely on K-condition numbers and related estimates for compact Hilbert-Schmidt operators in Hilbert space. (English) |
Keyword:
|
conjugate gradient method |
Keyword:
|
superlinear convergence |
Keyword:
|
mesh independence |
Keyword:
|
preconditioning operator |
MSC:
|
65F10 |
MSC:
|
65N22 |
idZBL:
|
Zbl 1099.65033 |
idMR:
|
MR2133730 |
DOI:
|
10.1007/s10492-005-0017-z |
. |
Date available:
|
2009-09-22T18:22:19Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134606 |
. |
Reference:
|
[1] O. Axelsson: Iterative Solution Methods.Cambridge University Press, Cambridge, 1994. Zbl 0813.15021, MR 1276069 |
Reference:
|
[2] O. Axelsson, I. Kaporin: On the sublinear and superlinear rate of convergence of conjugate gradient methods. Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999).Numer. Algorithms 25 (2000), 1–22. MR 1827142, 10.1023/A:1016694031362 |
Reference:
|
[3] O. Axelsson, J. Karátson: On the rate of convergence of the conjugate gradient method for linear operators in Hilbert space.Numer. Funct. Anal. Optmization 23 (2002), 285–302. MR 1914497, 10.1081/NFA-120006694 |
Reference:
|
[4] O. Axelsson, J. Karátson: Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators.Numer. Math. 99 (2004), 197–223, SpringerLink DOI: 10.1007/s00211-004-0557-2 (electronic). MR 2107430, 10.1007/s00211-004-0557-2 |
Reference:
|
[5] R. E. Bank, D. J. Rose: Marching algorithms for elliptic boundary value problems. I. The constant coefficient case.SIAM J. Numer. Anal. 14 (1977), 792–829. MR 0502000, 10.1137/0714055 |
Reference:
|
[6] R. E. Bank: Marching algorithms for elliptic boundary value problems. II. The variable coefficient case.SIAM J. Numer. Anal. 14 (1977), 950–970. Zbl 0382.65052, MR 0502001, 10.1137/0714064 |
Reference:
|
[7] B. Beckermann, A. B. J. Kuijlaars: Superlinear convergence of conjugate gradients.SIAM J. Numer. Anal. 39 (2001), 300–329, Electronic. MR 1860727, 10.1137/S0036142999363188 |
Reference:
|
[8] P. Concus, G. H. Golub: Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations.SIAM J. Numer. Anal. 10 (1973), 1103–1120. MR 0341890, 10.1137/0710092 |
Reference:
|
[9] J. W. Daniel: The conjugate gradient method for linear and nonlinear operator equations.SIAM J. Numer. Anal. 4 (1967), 10–26. Zbl 0154.40302, MR 0217987, 10.1137/0704002 |
Reference:
|
[10] H. C. Elman, M. H. Schultz: Preconditioning by fast direct methods for nonself-adjoint nonseparable elliptic equations.SIAM J. Numer. Anal. 23 (1986), 44–57. MR 0821905, 10.1137/0723004 |
Reference:
|
[11] V. Faber, T. Manteuffel, and S. V. Parter: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations.Adv. Appl. Math. 11 (1990), 109–163. MR 1053227, 10.1016/0196-8858(90)90007-L |
Reference:
|
[12] I. Faragó, J. Karátson: Numerical solution of nonlinear elliptic problems via preconditioning operators. Theory and applications.Advances in Computation, Vol. 11, NOVA Science Publishers, Huntington, 2002. MR 2106499 |
Reference:
|
[13] Z. Fortuna: Some convergence properties of the conjugate gradient method in Hilbert space.SIAM J. Numer. Anal. 16 (1979), 380–384. Zbl 0414.65029, MR 0530475, 10.1137/0716031 |
Reference:
|
[14] I. Gohberg, S. Goldberg, and M. A. Kaashoek: Classes of linear operators, Vol. I.Operator Theory: Advances and Applications, Vol. 49, Birkhäuser-Verlag, Basel, 1990. MR 1130394 |
Reference:
|
[15] R. M. Hayes: Iterative methods of solving linear problems in Hilbert space.Natl. Bur. Stand.; Appl. Math. Ser. 39 (1954), 71–103. MR 0066563 |
Reference:
|
[16] M. R. Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems.J. Res. Natl. Bur. Stand., Sect. B 49 (1952), 409–436. MR 0060307, 10.6028/jres.049.044 |
Reference:
|
[17] J. Kadlec: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set.Czechoslovak Math. J. 14(89) (1964), 386–393. (Russian) Zbl 0166.37703, MR 0170088 |
Reference:
|
[18] J. Karátson, I. Faragó: Variable preconditioning via quasi-Newton methods for nonlinear problems in Hilbert space.SIAM J. Numer. Anal. 41 (2003), 1242–1262. MR 2034879, 10.1137/S0036142901384277 |
Reference:
|
[19] T. Manteuffel, J. Otto: Optimal equivalent preconditioners.SIAM J. Numer. Anal. 30 (1993), 790–812. MR 1220653, 10.1137/0730040 |
Reference:
|
[20] J. W. Neuberger: Sobolev gradients and differential equations.Lecture Notes in Math., No. 1670, Springer-Verlag, Berlin, 1997. Zbl 0935.35002, MR 1624197 |
Reference:
|
[21] T. Rossi, J. Toivanen: A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension.SIAM J. Sci. Comput. 20 (1999), 1778–1793. MR 1694683, 10.1137/S1064827597317016 |
Reference:
|
[22] T. Rossi, J. Toivanen: Parallel fictitious domain method for a non-linear elliptic Neumann boundary value problem. Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997).Numer. Linear Algebra Appl. 6 (1999), 51–60. MR 1684652 |
Reference:
|
[23] W. Rudin: Functional Analysis.McGraw-Hill, New York, 1991. Zbl 0867.46001, MR 1157815 |
Reference:
|
[24] F. Riesz, B. Sz.-Nagy: Vorlesungen über Funktionalanalysis.VEB Deutscher Verlag der Wissenschaften, Berlin, 1982. Zbl 0483.47001 |
Reference:
|
[25] L. Simon, E. Baderko: Linear Partial Differential Equations of Second Order.Tankönyvkiadó, Budapest, 1983. (Hungarian) |
Reference:
|
[26] P. N. Swarztrauber: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle.SIAM Rev. 19 (1977), 490–501. Zbl 0358.65088, MR 0438732, 10.1137/1019071 |
Reference:
|
[27] Yu. V. Vorobyev: Methods of Moments in Applied Mathematics.Gordon and Breach, New York, 1965. Zbl 0196.47601, MR 0184400 |
Reference:
|
[28] R. Winter: Some superlinear convergence results for the conjugate gradient method.SIAM J. Numer. Anal. 17 (1980), 14–17. MR 0559456, 10.1137/0717002 |
. |