Previous |  Up |  Next

Article

Title: The strengthened C.B.S. inequality constant for second order elliptic partial differential operator and for hierarchical bilinear finite element functions (English)
Author: Pultarová, Ivana
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 3
Year: 2005
Pages: 323-329
Summary lang: English
.
Category: math
.
Summary: We estimate the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for hierarchical bilinear finite element spaces and elliptic partial differential equations with coefficients corresponding to anisotropy (orthotropy). It is shown that there is a nontrivial universal estimate, which does not depend on anisotropy. Moreover, this estimate is sharp and the same as for hierarchical linear finite element spaces. (English)
Keyword: Cauchy-Bunyakowski-Schwarz inequality
Keyword: multilevel preconditioning
Keyword: elliptic partial differential equation
MSC: 65N12
MSC: 65N22
MSC: 65N30
MSC: 74S05
idZBL: Zbl 1099.65102
idMR: MR2133733
DOI: 10.1007/s10492-005-0020-4
.
Date available: 2009-09-22T18:22:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134609
.
Reference: [1] O. Axelsson: A survey of algebraic multilevel iteration (AMLI) methods.BIT Numerical Mathematics 43 (2003), 863–879. Zbl 1049.65139, MR 2058872, 10.1023/B:BITN.0000014564.49281.13
Reference: [2] O.  Axelsson, R. Blaheta: Two simple derivations of universal bounds for the C.B.S.  inequality constant.Applications of Mathematics (to appear). MR 2032148
Reference: [3] R. Blaheta: GPCG-generalized preconditioned CD  method and its use with non-linear and non-symmetric displacement decomposition preconditioners.Numer. Linear Algebra Appl. 9 (2002), 527–550. MR 1934875, 10.1002/nla.295
Reference: [4] O.  Axelsson, V. A. Barker: Finite element solution of boundary value problems: Theory and computations.Classics in Appl. Math, SIAM, Philadelphia, 2001. MR 1856818
Reference: [5] J. F.  Maitre, F. Mussy: The contraction number of a class of twolevel methods, an exact evaluation for some finite element subspaces and model problem.In: Multigrid Methods, Lecture Notes in Math. 960, W.  Hackbusch, U.  Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 535–544.
.

Files

Files Size Format View
AplMat_50-2005-3_10.pdf 452.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo