Previous |  Up |  Next

Article

Title: Space-filling curves for 2-simplicial meshes created with bisections and reflections (English)
Author: Maubach, Joseph M.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 3
Year: 2005
Pages: 309-321
Summary lang: English
.
Category: math
.
Summary: Numerical experiments in J. Maubach: Local bisection refinement and optimal order algebraic multilevel preconditioners, PRISM-97 conference Proceedings, 1977, 121–136 indicated that the refinement with the use of local bisections presented in J. Maubach: Local bisection refinement for $n$-simplicial grids generated by reflections, SIAM J. Sci. Comput. 16 (1995), 210–227 leads to highly locally refined computational 2-meshes which can be very efficiently load-balanced with the use of a space-filling curve. This paper introduces the construction of this curve which can be produced at almost no costs, proofs that all its properties are invariant under local bisection, and comments on the 3-dimensional case. With the use of a space-filling curve (which passes through all triangular elements), load balancing over several processors is trivial: The load can be distributed over $N$ processors by cutting the curve into $N$ almost equilength parts. Each processor then operates on the triangles which are passed by its part of the curve. (English)
Keyword: grid generation
Keyword: space filling curve
Keyword: load balancing
MSC: 65M50
MSC: 65N50
idZBL: Zbl 1099.65082
idMR: MR2133732
DOI: 10.1007/s10492-005-0019-x
.
Date available: 2009-09-22T18:22:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134608
.
Reference: [1] E.  Bänsch: Local mesh refinement in 2 and 3  dimensions.IMPACT Comput. Sci. Eng. 3 (1991), 181–191. MR 1141298, 10.1016/0899-8248(91)90006-G
Reference: [2] G. H.  Golub, C. F.  Van Loan: Matrix Computations, 2nd edition.The Johns Hopkins University Press, Baltimore, 1989. MR 1002570
Reference: [3] B.  Joe, A.  Liu: On the shape of tetrahedra from bisection.Math. Comput. 63 (1994), 141–154. MR 1240660, 10.1090/S0025-5718-1994-1240660-4
Reference: [4] I.  Kossaczky: A recursive approach to local mesh refinement in two and three dimensions.J.  Comput. App. Math. 55 (1994), 275–288. Zbl 0823.65119, MR 1329875, 10.1016/0377-0427(94)90034-5
Reference: [5] W. J.  Layton, J. M.  Maubach, and P. J.  Rabier: Robustness of an elementwise parallel finite element method for convection-diffusion problems.SIAM J.  Sci. Comput. 19 (1998), 1870–1891. MR 1638068, 10.1137/S1064827595293545
Reference: [6] W.  Layton, J. M.  Maubach, and P.  Rabier: Parallel algorithms for maximal monotone operators of local type.Numer. Math. 71 (1995), 29–58. MR 1339731, 10.1007/s002110050135
Reference: [7] J.  Maubach: Local bisection refinement for $n$-simplicial grids generated by reflections.SIAM J.  Sci. Comput. 16 (1995), 210–227. MR 1311687, 10.1137/0916014
Reference: [8] J.  Maubach: The efficient location of simplicial neighbors for locally refined $n$-simplicial grids.In: Proceedings of the 5th  International Meshing Roundtable, Pittsburgh, October 1996, 1996, pp. 137–153.
Reference: [9] J.  Maubach: Iterative Methods for Non-Linear Partial Differential Equations.CWI, Amsterdam, 1994. Zbl 0820.65022, MR 1354839
Reference: [10] J.  Maubach: Local bisection refinement and optimal order algebraic multilevel preconditioners.In: PRISM-97 conference Proceedings, O. Axelsson et al. (eds.), University of Nijmegen, 1997, pp. 121–136.
Reference: [11] W. F.  Mitchell: Optimal multilevel iterative methods for adaptive grids.SIAM J.  Sci. Stat. Comput. 13 (1992), 146–167. Zbl 0746.65087, MR 1145181, 10.1137/0913009
Reference: [12] A.  Mukherjee: An adaptive finite element code for elliptic boundary value problems in three dimensions with applications in numerical relativity.PhD. Thesis, Penn State University, 1996.
Reference: [13] A. Plaza, J. P.  Suárez, M. A.  Padrón, S. Falcón, and D.  Amieiro: Mesh quality improvement and other properties in the four-triangles longest-edge partition.Comput. Aided Geom. Des. 21 (2004), 353–369. MR 2046913, 10.1016/j.cagd.2004.01.001
Reference: [14] M. C. Rivara, C.  Levin: A 3-D  refinement algorithm suitable for adaptive and multi-grid techniques.Commun. Appl. Numer. Methods 8 (1992), 281–290. 10.1002/cnm.1630080502
.

Files

Files Size Format View
AplMat_50-2005-3_9.pdf 423.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo