Title:
|
Stability of a finite element method for 3D exterior stationary Navier-Stokes flows (English) |
Author:
|
Deuring, Paul |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
59-94 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary. (English) |
Keyword:
|
stationary incompressible Navier-Stokes flows |
Keyword:
|
exterior domains |
Keyword:
|
stabilized finite element methods |
Keyword:
|
stability estimates |
MSC:
|
35Q30 |
MSC:
|
65N30 |
MSC:
|
76D05 |
MSC:
|
76M10 |
idZBL:
|
Zbl 1164.35455 |
idMR:
|
MR2293528 |
DOI:
|
10.1007/s10492-007-0003-8 |
. |
Date available:
|
2009-09-22T18:28:24Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134663 |
. |
Reference:
|
[1] R. A. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] F. Alouges, J. Laminie, and S. M. Mefire: Exponential meshes and three-dimensional computation of a magnetic field.Numer. Methods Partial Differ. Equations 19 (2003), 592–637. MR 1996222, 10.1002/num.10064 |
Reference:
|
[3] K. I. Babenko, M. M. Vasil’ev: On the asymptotic behavior of a steady flow of viscous fluid at some distance from an immersed body.J. Appl. Math. Mech. 37 (1973), 651–665. MR 0347214, 10.1016/0021-8928(73)90115-9 |
Reference:
|
[4] S. Bönisch, V. Heuveline, and P. Wittwer: Adaptive boundary conditions for exterior flow problems.J. Math. Fluid Mech. 7 (2005), 85–107. MR 2127743, 10.1007/s00021-004-0108-8 |
Reference:
|
[5] S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods, 2nd edition.Springer-Verlag, New York, 2002. MR 1894376 |
Reference:
|
[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, 1991. MR 1115205 |
Reference:
|
[7] C.-H. Bruneau: Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations.M2AN, Math. Model. Numer. Anal. 34 (2000), 303–314. Zbl 0954.76014, MR 1765661, 10.1051/m2an:2000142 |
Reference:
|
[8] C.-H. Bruneau, P. Fabrie: New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result.M2AN, Math. Model. Numer. Anal. 30 (1996), 815–840. MR 1423081, 10.1051/m2an/1996300708151 |
Reference:
|
[9] C. Calgaro, P. Deuring, and D. Jennequin: A preconditioner for generalized saddle point problems: application to 3D stationary Navier-Stokes equations.Numer. Methods Partial Differ. Equations 22 (2006), 1289-1313. MR 2257634, 10.1002/num.20154 |
Reference:
|
[10] P. Deuring: Finite element methods for the Stokes system in three-dimensional exterior domains.Math. Methods Appl. Sci. 20 (1997), 245–269. Zbl 0870.76041, MR 1430495, 10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F |
Reference:
|
[11] P. Deuring: A stable mixed finite element method on truncated exterior domains.M2AN, Math. Model. Numer. Anal. 32 (1998), 283–305. Zbl 0904.65108, MR 1627147, 10.1051/m2an/1998320302831 |
Reference:
|
[12] P. Deuring: Approximating exterior flows by flows on truncated exterior domains: piecewise polygonial artificial boundaries.In: Elliptic and Parabolic problems. Proceedings of the 4th European Conference, Rolduc and Gaeta, 2001, J. Bemelmans (ed.), World Scientific, Singapore, 2002, pp. 364–376. MR 1937556 |
Reference:
|
[13] P. Deuring: Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: asymptotic behaviour of the second derivatives of the velocity.Commun. Partial Differ. Equations 30 (2005), 987–1020. MR 2180292, 10.1081/PDE-200064436 |
Reference:
|
[14] P. Deuring: A finite element method for 3D exterior Oseen flows: error estimates.Submitted. Zbl 1148.35062 |
Reference:
|
[15] P. Deuring, S. Kračmar: Artificial boundary conditions for the Oseen system in 3D exterior domains.Analysis 20 (2000), 65–90. MR 1757070, 10.1524/anly.2000.20.1.65 |
Reference:
|
[16] P. Deuring, S. Kračmar: Exterior stationary Navier-Stokes flows in 3D with non-zero velocity at infinity: approximation by flows in bounded domains.Math. Nachr. 269–270 (2004), 86–115. MR 2074775, 10.1002/mana.200310167 |
Reference:
|
[17] R. Farwig: A variational approach in weighted Sobolev spaces to the operator $- \Delta + \partial / \partial x_1$ in exterior domains of $\mathbb{R}^3$.Math. Z. 210 (1992), 449–464. MR 1171183 |
Reference:
|
[18] R. Farwig: The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces.Math. Z. 211 (1992), 409–447. MR 1190220, 10.1007/BF02571437 |
Reference:
|
[19] M. Feistauer, C. Schwab: On coupled problems for viscous flows in exterior domains.Math. Models Methods Appl. Sci. 8 (1998), 658–684. MR 1634842, 10.1142/S0218202598000305 |
Reference:
|
[20] M. Feistauer, C. Schwab: Coupled problems for viscous incompressible flow in exterior domains.In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 97–116. MR 1727443 |
Reference:
|
[21] M. Feistauer, C. Schwab: Coupling of an interior Navier-Stokes problem with an exterior Oseen problem.J. Math. Fluid Mech. 3 (2001), 1–17. MR 1830652, 10.1007/PL00000961 |
Reference:
|
[22] R. Finn: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems.Arch. Ration. Mech. Anal. 19 (1965), 363–406. Zbl 0149.44606, MR 0182816, 10.1007/BF00253485 |
Reference:
|
[23] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems (rev. ed.).Springer-Verlag, New York, 1998. MR 1284205 |
Reference:
|
[24] G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems.Springer-Verlag, New York, 1994. Zbl 0949.35005, MR 1284206 |
Reference:
|
[25] V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes Equations.Springer-Verlag, Berlin, 1986. MR 0851383 |
Reference:
|
[26] C. I. Goldstein: The finite element method with nonuniform mesh sizes for unbounded domains.Math. Comput. 36 (1981), 387–404. Zbl 0467.65058, MR 0606503, 10.1090/S0025-5718-1981-0606503-5 |
Reference:
|
[27] C. I. Goldstein: Multigrid methods for elliptic problems in unbounded domains.SIAM J. Numer. Anal. 30 (1993), 159–183. Zbl 0772.65075, MR 1202661, 10.1137/0730008 |
Reference:
|
[28] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Pitman, Boston, 1985. Zbl 0695.35060, MR 0775683 |
Reference:
|
[29] G. H. Guirguis: On the coupling of boundary integral and finite element methods for the exterior Stokes problem in 3D.SIAM J. Numer. Anal. 24 (1987), 310–322. MR 0881366, 10.1137/0724023 |
Reference:
|
[30] G. H. Guirguis, M. D. Gunzburger: On the approximation of the exterior Stokes problem in three dimensions.M2AN, Math. Model. Numer. Anal. 21 (1987), 445–464. MR 0908240, 10.1051/m2an/1987210304451 |
Reference:
|
[31] M. D. Gunzburger: Finite Element Methods for Viscous Incompressible Flows.Academic Press, Boston, 1989. Zbl 0697.76031, MR 1017032 |
Reference:
|
[32] L. Halpern, M. Schatzman: Artificial boundary conditions for incompressible viscous flows.SIAM J. Math. Anal. 20 (1989), 308–353. MR 0982662, 10.1137/0520021 |
Reference:
|
[33] Yinnian He: Coupling boundary integral and finite element methods for the Oseen coupled problem.Comput. Math. Appl. 44 (2002), 1413–1429. Zbl 1037.76039, MR 1938777, 10.1016/S0898-1221(02)00266-3 |
Reference:
|
[34] J. G. Heywood, R. Rannacher, and S. Turek: Artificial boundaries and flux and pressure conditions for incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 22 (1996), 325–352. MR 1380844, 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y |
Reference:
|
[35] S. Kračmar, J. Neustupa: Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions.In: Proceedings of the International Symposium on Numerical Analysis (ISNA’92), Charles University, Prague, 1993, pp. 156–177. |
Reference:
|
[36] S. Kračmar, J. Neustupa: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions.Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180. MR 1972357, 10.1016/S0362-546X(01)00534-X |
Reference:
|
[37] P. Kučera: Solutions of the Navier-Stokes equations with mixed boundary conditions in a bounded domain.In: Analysis, Numerics and Applications of Differential and Integral Equations. Pitman Research Notes in Mathematics Series 379, M. Bach (ed.), Addison Wesley, London, 1998, pp. 127–131. MR 1606691 |
Reference:
|
[38] P. Kučera: A structure of the set of critical points to the Navier-Stokes equations with mixed boundary conditions.In: Navier-Stokes Equations: Theory and Numerical Methods. Pitman Research Notes in Mathematics Series 388, R. Salvi (ed.), Addison Wesley, London, 1998, pp. 201–205. MR 1773598 |
Reference:
|
[39] P. Kučera, Z. Skalák: Local solutions to the Navier-Stokes equations with mixed boundary conditions.Acta Appl. Math. 54 (1998), 275–288. MR 1671783, 10.1023/A:1006185601807 |
Reference:
|
[40] S. A. Nazarov, M. Specovius-Neugenbauer: Approximation of exterior problems. Optimal conditions for the Laplacian.Analysis 16 (1996), 305–324. MR 1429456, 10.1524/anly.1996.16.4.305 |
Reference:
|
[41] S. A. Nazarov, M. Specovius-Neugenbauer: Approximation of exterior boundary value problems for the Stokes system.Asymptotic Anal. 14 (1997), 233–255. MR 1458705 |
Reference:
|
[42] S. A. Nazarov, M. Specovius-Neugebauer: Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier-Stokes problem.Math. Nachr. 252 (2003), 86–105. MR 1903042, 10.1002/mana.200310039 |
Reference:
|
[43] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Masson, Paris, 1967. MR 0227584 |
Reference:
|
[44] K. Nishida: Numerical method for Oseen’s linearized equations in three-dimensional exterior domains.J. Comput. Appl. Math. 152 (2003), 405–409. Zbl 1059.76055, MR 1991305, 10.1016/S0377-0427(02)00770-7 |
Reference:
|
[45] A. Quarteroni, A. Valli: Numerical Approximation of Partial Differential Equations.Springer-Verlag, New York, 1994. MR 1299729 |
Reference:
|
[46] T. C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems.Numer. Math. 79 (1998), 283–319. Zbl 0910.76033, MR 1622522, 10.1007/s002110050341 |
Reference:
|
[47] A. Sequeira: The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem.Math. Methods Appl. Sci. 5 (1983), 356–375. Zbl 0521.76034, MR 0716661, 10.1002/mma.1670050124 |
Reference:
|
[48] A. Sequeira: On the computer implementation of a coupled boundary and finite element method for the bidimensional exterior steady Stokes problem.Math. Methods Appl. Sci. 8 (1986), 117–133. Zbl 0619.76039, MR 0833255, 10.1002/mma.1670080109 |
Reference:
|
[49] S. V. Tsynkov: Numerical solution of problems on unbounded domains. A review.Appl. Numer. Math. 27 (1998), 465–532. Zbl 0939.76077, MR 1644674, 10.1016/S0168-9274(98)00025-7 |
. |