Previous |  Up |  Next

Article

Title: Mixed finite element analysis of semi-coercive unilateral contact problems with given friction (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 1
Year: 2007
Pages: 25-58
Summary lang: English
.
Category: math
.
Summary: A unilateral contact 2D-problem is considered provided one of two elastic bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both normal and tangential constraints on the contact interface, we introduce a saddle point problem and prove its unique solvability. We discretize the problem by a standard finite element method and prove a convergence of approximations. We propose a numerical realization on the basis of an auxiliary “bolted” problem and the algorithm of Uzawa. (English)
Keyword: unilateral contact
Keyword: Tresca’s model of friction
Keyword: mixed variational formulation
Keyword: Uzawa algorithm
MSC: 49J40
MSC: 65N30
MSC: 74M10
MSC: 74M15
idZBL: Zbl 1164.49304
idMR: MR2293527
DOI: 10.1007/s10492-007-0002-9
.
Date available: 2009-09-22T18:28:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134662
.
Reference: [1] J. P. Aubin: Approximation of Elliptic Boundary Value Problems.Wiley, New York, 1972. Zbl 0248.65063, MR 0478662
Reference: [2] L.  Baillet, T.  Sassi: Méthodes d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement.C. R.  Acad. Sci. Paris, Ser. I 334 (2002), 917–922. MR 1909940, 10.1016/S1631-073X(02)02356-7
Reference: [3] P.  Coorevits, P.  Hild, K.  Lhalouani, and T.  Sassi: Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies.Math. Comput. 71 (2002), 1–25. MR 1862986, 10.1090/S0025-5718-01-01318-7
Reference: [4] J. Daněk, I.  Hlaváček, and J.  Nedoma: Domain decomposition for generalized unilateral semi-coercive contact problem with friction in elasticity.Math. Comput. Simul. 68 (2005), 271–300. MR 2138931, 10.1016/j.matcom.2004.12.007
Reference: [5] I.  Ekeland, R. Temam: Analyse Convexe et Problèmes Variationnels.Dunod, Paris, 1974. MR 0463993
Reference: [6] M. Fiedler: Special Matrices and Their Applications in Numerical Mathematics.Martinus Nijhoff Publ. (member of Kluwer), Dordrecht-Boston, 1986. Zbl 0677.65019, MR 1105955
Reference: [7] M.  Frémond: Dual formulations for potentials and complementary energies.In: MAFELAP, J.  R. Whiteman (ed.), Academic Press, London, 1973.
Reference: [8] J.  Haslinger, I.  Hlaváček: Approximation of the Signorini problem with friction by a mixed finite element method.J.  Math. Anal. Appl. 86 (1982), 99–122. MR 0649858, 10.1016/0022-247X(82)90257-8
Reference: [9] J.  Haslinger, I.  Hlaváček, and J.  Nečas: Numerical methods for unilateral problems in solid mechanics.In: Handbook of Numerical Analysis, vol. IV, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 313–485. MR 1422506
Reference: [10] J.  Haslinger, T.  Sassi: Mixed finite element approximation of 3D  contact problems with given friction: error analysis and numerical realization.M2AN, Math. Model. Numer. Anal. 38 (2004), 563–578. MR 2075760, 10.1051/m2an:2004026
Reference: [11] J. Haslinger, R.  Kučera, and Z.  Dostál: An algorithm for numerical realization of 3D  contact problems with Coulomb friction.J.  Comput. Appl. Math. 164–165 (2004), 387–408. MR 2056889
Reference: [12] I.  Hlaváček, J.  Haslinger, J.  Nečas, and J. Lovíšek: Solution of Variational Inequalities in Mechanics.Springer-Verlag, New York, 1988. MR 0952855
Reference: [13] I.  Hlaváček: Finite element analysis of a static contact problem with Coulomb friction.Appl. Math. 45 (2000), 357–379. MR 1777018, 10.1023/A:1022220711369
Reference: [14] I.  Hlaváček, J.  Nedoma: On a solution of a generalized semi-coercive contact problem in thermo-elasticity.Math. Comput. Simul. 60 (2002), 1–17. MR 1916897, 10.1016/S0378-4754(01)00433-5
Reference: [15] V.  Janovský, P.  Procházka: Contact problem for two elastic bodies, Parts I–III.Apl. Mat. 25 (1980), 87–109, 110–136, 137–146. MR 0560325
Reference: [16] J.  Nečas, I.  Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [17] T.  Sassi: Nonconforming mixed variational formulation of the Signorini problem with a given friction.Preprint of MAPLY No. 365, 2003.http://maply,univ-lyon1.fr/publis/.
.

Files

Files Size Format View
AplMat_52-2007-1_2.pdf 449.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo