Title:
|
Mixed finite element analysis of semi-coercive unilateral contact problems with given friction (English) |
Author:
|
Hlaváček, Ivan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
25-58 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A unilateral contact 2D-problem is considered provided one of two elastic bodies can shift in a given direction as a rigid body. Using Lagrange multipliers for both normal and tangential constraints on the contact interface, we introduce a saddle point problem and prove its unique solvability. We discretize the problem by a standard finite element method and prove a convergence of approximations. We propose a numerical realization on the basis of an auxiliary “bolted” problem and the algorithm of Uzawa. (English) |
Keyword:
|
unilateral contact |
Keyword:
|
Tresca’s model of friction |
Keyword:
|
mixed variational formulation |
Keyword:
|
Uzawa algorithm |
MSC:
|
49J40 |
MSC:
|
65N30 |
MSC:
|
74M10 |
MSC:
|
74M15 |
idZBL:
|
Zbl 1164.49304 |
idMR:
|
MR2293527 |
DOI:
|
10.1007/s10492-007-0002-9 |
. |
Date available:
|
2009-09-22T18:28:18Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134662 |
. |
Reference:
|
[1] J. P. Aubin: Approximation of Elliptic Boundary Value Problems.Wiley, New York, 1972. Zbl 0248.65063, MR 0478662 |
Reference:
|
[2] L. Baillet, T. Sassi: Méthodes d’éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement.C. R. Acad. Sci. Paris, Ser. I 334 (2002), 917–922. MR 1909940, 10.1016/S1631-073X(02)02356-7 |
Reference:
|
[3] P. Coorevits, P. Hild, K. Lhalouani, and T. Sassi: Mixed finite element methods for unilateral problems: Convergence analysis and numerical studies.Math. Comput. 71 (2002), 1–25. MR 1862986, 10.1090/S0025-5718-01-01318-7 |
Reference:
|
[4] J. Daněk, I. Hlaváček, and J. Nedoma: Domain decomposition for generalized unilateral semi-coercive contact problem with friction in elasticity.Math. Comput. Simul. 68 (2005), 271–300. MR 2138931, 10.1016/j.matcom.2004.12.007 |
Reference:
|
[5] I. Ekeland, R. Temam: Analyse Convexe et Problèmes Variationnels.Dunod, Paris, 1974. MR 0463993 |
Reference:
|
[6] M. Fiedler: Special Matrices and Their Applications in Numerical Mathematics.Martinus Nijhoff Publ. (member of Kluwer), Dordrecht-Boston, 1986. Zbl 0677.65019, MR 1105955 |
Reference:
|
[7] M. Frémond: Dual formulations for potentials and complementary energies.In: MAFELAP, J. R. Whiteman (ed.), Academic Press, London, 1973. |
Reference:
|
[8] J. Haslinger, I. Hlaváček: Approximation of the Signorini problem with friction by a mixed finite element method.J. Math. Anal. Appl. 86 (1982), 99–122. MR 0649858, 10.1016/0022-247X(82)90257-8 |
Reference:
|
[9] J. Haslinger, I. Hlaváček, and J. Nečas: Numerical methods for unilateral problems in solid mechanics.In: Handbook of Numerical Analysis, vol. IV, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 313–485. MR 1422506 |
Reference:
|
[10] J. Haslinger, T. Sassi: Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization.M2AN, Math. Model. Numer. Anal. 38 (2004), 563–578. MR 2075760, 10.1051/m2an:2004026 |
Reference:
|
[11] J. Haslinger, R. Kučera, and Z. Dostál: An algorithm for numerical realization of 3D contact problems with Coulomb friction.J. Comput. Appl. Math. 164–165 (2004), 387–408. MR 2056889 |
Reference:
|
[12] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lovíšek: Solution of Variational Inequalities in Mechanics.Springer-Verlag, New York, 1988. MR 0952855 |
Reference:
|
[13] I. Hlaváček: Finite element analysis of a static contact problem with Coulomb friction.Appl. Math. 45 (2000), 357–379. MR 1777018, 10.1023/A:1022220711369 |
Reference:
|
[14] I. Hlaváček, J. Nedoma: On a solution of a generalized semi-coercive contact problem in thermo-elasticity.Math. Comput. Simul. 60 (2002), 1–17. MR 1916897, 10.1016/S0378-4754(01)00433-5 |
Reference:
|
[15] V. Janovský, P. Procházka: Contact problem for two elastic bodies, Parts I–III.Apl. Mat. 25 (1980), 87–109, 110–136, 137–146. MR 0560325 |
Reference:
|
[16] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655 |
Reference:
|
[17] T. Sassi: Nonconforming mixed variational formulation of the Signorini problem with a given friction.Preprint of MAPLY No. 365, 2003.http://maply,univ-lyon1.fr/publis/. |
. |